Skip to main content
Log in

Basic fibroblast growth factor increases intracellular magnesium concentration through the specific signaling pathways

  • Published:
Molecules and Cells

Abstract

Basic fibroblast growth factor (bFGF) plays an important role in angiogenesis. However, the underlying mechanisms are not clear. Mg2+ is the most abundant intracellular divalent cation in the body and plays critical roles in many cell functions. We investigated the effect of bFGF on the intracellular Mg2+ concentration ([Mg2+]i) in human umbilical vein endothelial cells (HUVECs). bFGF increased [Mg2+]i in a dose-dependent manner, independent of extracellular Mg2+. This bFGF-induced [Mg2+]i increase was blocked by tyrosine kinase inhibitors (tyrphostin A-23 and genistein), phosphatidylinositol 3-kinase (PI3K) inhibitors (wortmannin and LY294002) and a phospholipase Cγ (PLCγ) inhibitor (U73122). In contrast, mitogen-activated protein kinase inhibitors (SB202190 and PD98059) did not affect the bFGF-induced [Mg2+]i increase. These results suggest that bFGF increases the [Mg2+]i from the intracellular Mg2+ stores through the tyrosine kinase/PI3K/PLCγ-dependent signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bussolino, F., Mantovani, A., and Persico, G. (1997). Molecular mechanisms of blood vessel formation. Trends Biochem. Sci. 22, 251–256.

    Article  PubMed  CAS  Google Scholar 

  • Cines, D.B., Pollak, E.S., Buck, C.A., Loscalzo, J., Zimmerman, G.A., McEver, R.P., Pober, J.S., Wick, T.M., Konkle, B.A., Schwartz, B.S., et al. (1998). Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91, 3527–3561.

    PubMed  CAS  Google Scholar 

  • Folkman, J., and Shing, Y. (1992). Angiogenesis. J. Biol. Chem. 267, 10931–10934.

    PubMed  CAS  Google Scholar 

  • Giavazzi, R., Giuliani, R., Coltrini, D., Bani, M.R., Ferri, C., Sennino, B., Tosatti, M.P., Stoppacciaro, A., and Presta, M. (2001). Modulation of tumor angiogenesis by conditional expression of fibroblast growth factor-2 affects early but not established tumors. Cancer Res. 61, 309–317.

    PubMed  CAS  Google Scholar 

  • Gunther, T. (1986). Functional compartmentation of intracellular magnesium. Magnesium 5, 53–59.

    PubMed  CAS  Google Scholar 

  • Hackett, S.F., Friedman, Z., and Campochiaro, P.A. (1987). Cyclic 3′,5′-adenosine monophosphate modulates vascular endothelial cell migration in vitro. Cell Biol. Int. Rep. 11, 279–287.

    Article  PubMed  CAS  Google Scholar 

  • Hong, B.Z., Kang, H.S., So, J.N., Kim, H.N., Park, S.A., Kim, S.J., Kim, K.R., and Kwak, Y.G. (2006). Vascular endothelial growth factor increases the intracellular magnesium. Biochem. Biophys. Res. Commun. 347, 496–501.

    Article  PubMed  CAS  Google Scholar 

  • Ishijima, S., and Tatibana, M. (1994). Rapid mobilization of intracellular Mg2+ by bombesin in Swiss 3T3 cells: mobilization through external Ca(2+)- and tyrosine kinase-dependent mechanisms. J. Biochem. 115, 730–737.

    PubMed  CAS  Google Scholar 

  • Kim, S.J., Kang, H.S., Kang, M.S., Yu, X., Park, S.Y., Kim, I.S., Kim, N.S., Kim, S.Z., Kwak, Y.G., and Kim, J.S. (2005). alpha(1)-Agonists-induced Mg(2+) efflux is related to MAP kinase activation in the heart. Biochem. Biophys. Res. Commun. 333, 1132–1138.

    Article  PubMed  CAS  Google Scholar 

  • Klint, P., and Claesson-Welsh, L. (1999). Signal transduction by fibroblast growth factor receptors. Front Biosci. 4, D165–177.

    Article  PubMed  CAS  Google Scholar 

  • Kurosawa, M., Ishizuka, T., and Shimizu, Y. (1993). Formation of phosphatidylinositol-4-phosphate in human peripheral blood eosinophils. Clin. Exp. Allergy 23, 770–776.

    Article  PubMed  CAS  Google Scholar 

  • Laham, R.J., Chronos, N.A., Pike, M., Leimbach, M.E., Udelson, J.E., Pearlman, J.D., Pettigrew, R.I., Whitehouse, M.J., Yoshizawa, C., and Simons, M. (2000). Intracoronary basic fibroblast growth factor (FGF-2) in patients with severe ischemic heart disease: results of a phase I open-label dose escalation study. J. Am. Coll. Cardiol. 36, 2132–2139.

    Article  PubMed  CAS  Google Scholar 

  • Lapidos, K.A., Woodhouse, E.C., Kohn, E.C., and Masiero, L. (2001). Mg(++)-induced endothelial cell migration: substratum selectivity and receptor-involvement. Angiogenesis 4, 21–28.

    Article  PubMed  CAS  Google Scholar 

  • Lazarous, D.F., Unger, E.F., Epstein, S.E., Stine, A., Arevalo, J.L., Chew, E.Y., and Quyyumi, A.A. (2000). Basic fibroblast growth factor in patients with intermittent claudication: results of a phase I trial. J. Am. Coll. Cardiol. 36, 1239–1244.

    Article  PubMed  CAS  Google Scholar 

  • Liao, F., Folsom, A.R., and Brancati, F.L. (1998). Is low magnesium concentration a risk factor for coronary heart disease? The Atherosclerosis Risk in Communities (ARIC) Study. Am. Heart J. 136, 480–490.

    Article  PubMed  CAS  Google Scholar 

  • Maier, J.A., Bernardini, D., Rayssiguier, Y., and Mazur, A. (2004)a. High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro. Biochim. Biophys. Acta 1689, 6–12.

    PubMed  CAS  Google Scholar 

  • Maier, J.A., Malpuech-Brugere, C., Zimowska, W., Rayssiguier, Y., and Mazur, A. (2004b). Low magnesium promotes endothelial cell dysfunction: implications for atherosclerosis, inflammation and thrombosis. Biochim. Biophys. Acta 1689, 13–21.

    PubMed  CAS  Google Scholar 

  • Mussoni, L., Sironi, L., Tedeschi, L., Calvio, A.M., Colli, S., and Tremoli, E. (2001). Magnesium inhibits arterial thrombi after vascular injury in rat: in vitro impairment of coagulation. Thromb. Haemost. 86, 1292–1295.

    PubMed  CAS  Google Scholar 

  • Ornitz, D.M., and Itoh, N. (2001). Fibroblast growth factors. Genome Biol. 2, REVIEWS3005.

    Article  PubMed  CAS  Google Scholar 

  • Peacock, J.M., Folsom, A.R., Arnett, D.K., Eckfeldt, J.H., and Szklo, M. (1999). Relationship of serum and dietary magnesium to incident hypertension: the atherosclerosis risk in communities (ARIC) study. Ann. Epidemiol. 9, 159–165.

    Article  PubMed  CAS  Google Scholar 

  • Powers, C.J., McLeskey, S.W., and Wellstein, A. (2000). Fibroblast growth factors, their receptors and signaling. Endocr. Relat. Cancer 7, 165–197.

    Article  PubMed  CAS  Google Scholar 

  • Quamme, G.A., and Rabkin, S.W. (1990). Cytosolic free magnesium in cardiac myocytes: identification of a Mg2+ influx pathway. Biochem. Biophys. Res. Commun. 167, 1406–1412.

    Article  PubMed  CAS  Google Scholar 

  • Raju, B., Murphy, E., Levy, L.A., Hall, R.D., and London, R.E. (1989). A fluorescent indicator for measuring cytosolic free magnesium. Am. J. Physiol. 256, C540–548.

    PubMed  CAS  Google Scholar 

  • Romani, A.M., and Scarpa, A. (2000). Regulation of cellular magnesium. Front Biosci. 5, D720–734.

    Article  PubMed  CAS  Google Scholar 

  • Romani, A., Marfella, C., and Scarpa, A. (1992). Regulation of Mg2+ uptake in isolated rat myocytes and hepatocytes by protein kinase C. FEBS Lett. 296, 135–140.

    Article  PubMed  CAS  Google Scholar 

  • Romani, A., Marfella, C., and Scarpa, A. (1993). Cell magnesium transport and homeostasis: role of intracellular compartments. Miner. Electrolyte Metab. 19, 282–289.

    PubMed  CAS  Google Scholar 

  • Scarpa, A., and Brinley, F.J. (1981). In situ measurements of free cytosolic magnesium ions. Fed. Proc. 40, 2646–2652.

    PubMed  CAS  Google Scholar 

  • Schlessinger, J. (2000). Cell signaling by receptor tyrosine kinases. Cell 103, 211–225.

    Article  PubMed  CAS  Google Scholar 

  • Schweigel, M., Park, H.S., Etschmann, B., and Martens, H. (2006). Characterization of the Na+-dependent Mg2+ transport in sheep ruminal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G56–65.

    Article  PubMed  CAS  Google Scholar 

  • Shi, B., Heavner, J.E., Boylan, L.M., Wang, M.J., and Spallholz, J.E. (1995). Dietary magnesium deficiency increases Gi alpha levels in the rat heart after myocardial infarction. Cardiovasc. Res. 30, 923–929.

    PubMed  CAS  Google Scholar 

  • Tashiro, M., Tursun, P., and Konishi, M. (2005). Intracellular and extracellular concentrations of Na+ modulate Mg2+ transport in rat ventricular myocytes. Biophys. J. 89, 3235–3247.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, J., Nakayama, S., Matsubara, T., and Hotta, N. (1998). Regulation of intracellular free Mg2+ concentration in isolated rat hearts via beta-adrenergic and muscarinic receptors. J. Mol. Cell Cardiol. 30, 2307–2318.

    Article  PubMed  CAS  Google Scholar 

  • Webber, C.A., Chen, Y.Y., Hehr, C. L., Johnston, J., and McFarlane, S. (2005). Multiple signaling pathways regulate FGF-2-induced retinal ganglion cell neurite extension and growth cone guidance. Mol. Cell. Neurosci. 30, 37–47.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, F.I., and Cittadini, A. (1999). Magne sium in cell proliferation and differentiation. Front Biosci. 4, D607–617.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, F.I., and Cittadini, A. (2003). Chemistry and biochemistry of magnesium. Mol. Aspects Med. 24, 3–9.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, F.I., Torsello, A., Fasanella, S., and Cittadini, A. (2003). Cell physiology of magnesium. Mol. Aspects Med. 24, 11–26.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, G.H., and Melvin, J.E. (1996). Na+-dependent release of Mg2+ from an intracellular pool in rat sublingual mucous acini. J. Biol. Chem. 271, 29067–29072.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Geun Kwak.

About this article

Cite this article

Hong, BZ., Park, SA., Kim, HN. et al. Basic fibroblast growth factor increases intracellular magnesium concentration through the specific signaling pathways. Mol Cells 28, 13–17 (2009). https://doi.org/10.1007/s10059-009-0103-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0103-2

Keywords

Navigation