Skip to main content
Log in

PKA-Mediated stabilization of FoxH1 negatively regulates ERα activity

  • Published:
Molecules and Cells

Abstract

Estrogen receptor α (ERα) mediates the mitogenic effects of estrogen. ERα signaling regulates the normal growth and differentiation of mammary tissue, but uncontrolled ERα activation increases the risk to breast cancer. Estrogen binding induces ligand-dependent ERα activation, thereby facilitating ERα dimerization, promoter binding and coactivator recruitment. ERα can also be activated in a ligand-independent manner by many signaling pathways, including protein kinase A (PKA) signaling. However, in several ERα-positive breast cancer cells, PKA inhibits estrogen-dependent cell growth. FoxH1 represses the transcriptional activities of estrogen receptors and androgen receptors (AR). Interestingly, FoxH1 has been found to inhibit the PKA-induced and ligand-induced activation of AR. In the present study, we examined the effects of PKA activation on the ability of FoxH1 to represses ERα transcriptional activity. We found that PKA increases the protein stability of FoxH1, and that FoxH1 inhibits PKA-induced and estradiol-induced activation of an estrogen response element (ERE). Furthermore, in MCF7 cells, FoxH1 knockdown increased the PKA-induced and estradiol-induced activation of the ERE. These results suggest that PKA can negatively regulate ERα, at least in part, through FoxH1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Dhaheri, M.H., and Rowan, B.G. (2007). Protein kinase A exhibits selective modulation of estradiol-dependent transcription in breast cancer cells that is associated with decreased ligand binding, altered estrogen receptor α promoter interaction, and changes in receptor phosphorylation. Mol. Endocrinol. 21, 439–456.

    Article  PubMed  CAS  Google Scholar 

  • Arnold, S.F., Obourn, J.D., Jaffe, H., and Notides, A.C. (1995). Phosphorylation of the human estrogen receptor on tyrosine 537 in vivo and by src family tyrosine kinases in vitro. Mol. Endocrinol. 9, 24–33.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., Weisberg, E., Fridmacher, V., Watanabe, M., Naco, G., and Whitman, M. (1997). Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389, 85–89.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D., Pace, P.E., Coombes, R.C., and Ali, S. (1999). Phosphorylation of human estrogen receptor α by protein kinase A regulates dimerization. Mol. Cell. Biol. 19, 1002–1015.

    PubMed  CAS  Google Scholar 

  • Chen, G., Nomura, M., Morinaga, H., Matsubara, E., Okabe, T., Goto, K., Yanase, T., Zheng, H., Lu, J., and Nawata, H. (2005). Modulation of androgen receptor transactivation by FoxH1: A newly identified androgen receptor corepressor. J. Biol. Chem. 280, 36355–36363.

    Article  PubMed  CAS  Google Scholar 

  • Cho, H., and Katzenellenbogen, B.S. (1993). Synergistic activation of estrogen receptor-mediated transcription by estradiol and protein kinase activators. Mol. Endocrinol. 7, 441–452.

    Article  PubMed  CAS  Google Scholar 

  • Cui, Y., Zhang, M., Pestell, R., Curran, E.M., Welshons, W.V., and Fuqua, S.A. (2004). Phosphorylation of estrogen receptor α blocks its acetylation and regulates estrogen sensitivity. Cancer Res. 64, 9199–9208.

    Article  PubMed  CAS  Google Scholar 

  • Feng, W., Webb, P., Nguyen, P., Liu, X., Li, J., Karin, M., and Kushner, P.J. (2001). Potentiation of estrogen receptor activation function 1 (AF-1) by Src/JNK through a serine 118-independent pathway. Mol. Endocrinol. 15, 32–45.

    Article  PubMed  CAS  Google Scholar 

  • Kang, K., Lee, S.B., Jung, S.H., Cha, K.H., Park, W.D., Sohn, Y.C., and Nho, C.W. (2009). Tectoridin, a poor ligand of estrogen receptor alpha, exerts its estrogenic effects via an ERK-dependent pathway. Mol. Cells 27, 351–357.

    Article  PubMed  CAS  Google Scholar 

  • Kato, S., Endoh, H., Masuhiro, Y., Kitamoto, T., Uchiyama, S., Sasaki, H., Masushige, S., Gotoh, Y., Nishida, E., Kawashima, H., et al. (1995). Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270, 1491–1494.

    Article  PubMed  CAS  Google Scholar 

  • Kofron, M., Puck, H., Standley, H., Wylie, C., Old, R., Whitman, M., and Heasman, J. (2004). New roles for FoxH1 in patterning the early embryo. Development 131, 5065–5078.

    Article  PubMed  CAS  Google Scholar 

  • Lannigan, D.A. (2003). Estrogen receptor phosphorylation. Steroids 68, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H., and Bai, W. (2002). Regulation of estrogen receptor nuclear export by ligand-induced and p38-mediated receptor phosphorylation. Mol. Cell. Biol. 22, 5835–5845.

    Article  PubMed  CAS  Google Scholar 

  • Loven, M.A., Wood, J.R., and Nardulli, A.M. (2001). Interaction of estrogen receptors α and β with estrogen response elements. Mol. Cell. Endocrinol. 181, 151–163.

    Article  PubMed  CAS  Google Scholar 

  • Massagué, J., and Gomis, R.R. (2006). The logic of TGFβ signaling. FEBS Lett. 580, 2811–2820.

    Article  PubMed  Google Scholar 

  • McKenna, N.J., Lanz, R.B., and O’Malley, B.W. (1999). Nuclear receptor coregulators: cellular and molecular biology. Endocrine Rev. 20, 321–344.

    Article  CAS  Google Scholar 

  • Michalides, R., Griekspoor, A., Balkenende, A., Verwoerd, D., Janssen, L., Jalink, K., Floore, A., Velds, A., van’t Veer, L., and Neefjes, J. (2004). Tamoxifen resistance by a conformational arrest of the estrogen receptor α after PKA activation in breast cancer. Cancer Cell 5, 597–605.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson, S., Makela, S., Treuter, E., Tujague, M., Thomsen, J., Andersson, G., Enmark, E., Pettersson, K., Warner, M., and Gustafsson, J.A. (2001). Mechanisms of estrogen action. Physiol. Rev. 81, 1535–1565.

    PubMed  CAS  Google Scholar 

  • Pike, M.C., Spicer, D.V., Dahmoush, L., and Press, M.F. (1993). Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol. Rev. 15, 17–35.

    PubMed  CAS  Google Scholar 

  • Roessler, E., Ouspenskaia, M.V., Karkera, J.D., Velez, J.I., Kantipong, A., Lacbawan, F., Bowers, P., Belmont, J.W., Towbin, J.A., Goldmuntz, E., et al. (2008). Reduced NODAL signaling strength via mutation of several pathway members including FOXH1 is linked to human heart defects and holoprosencephaly. Am. J. Hum. Genet. 83, 18–29.

    Article  PubMed  CAS  Google Scholar 

  • Rogatsky, I., Trowbridge, J.M., and Garabedian, M.J. (1999). Potentiation of human estrogen receptor α transcriptional activation through phosphorylation of serines 104 and 106 by the cyclin ACDK2 complex. J. Biol. Chem. 274, 22296–22302.

    Article  PubMed  CAS  Google Scholar 

  • Schier, A.F. (2003). Nodal signaling in vertebrate development. Annu. Rev. Cell Dev. Biol. 19, 589–621.

    Article  PubMed  CAS  Google Scholar 

  • Sun, M., Paciga, J.E., Feldman, R.I., Yuan, Z., Coppola, D., Lu, Y.Y., Shelley, S.A., Nicosia, S.V., and Cheng, J.Q. (2001). Phosphatidylinositol-3-OH Kinase (PI3K)/AKT2, activated in breast cancer, regulates and is induced by estrogen receptor α (ERα) via interaction between ERα and PI3K. Cancer Res. 61, 5985–5991.

    PubMed  CAS  Google Scholar 

  • Watanabe, M., and Whitman, M. (1999). FAST-1 is a key maternal effector of mesoderm inducers in the early Xenopus embryo. Development 126, 5621–5634.

    PubMed  CAS  Google Scholar 

  • Whitman, M. (2001). Nodal signaling in early vertebrate embryos: themes and variations. Dev. Cell 1, 605–617.

    Article  PubMed  CAS  Google Scholar 

  • Xu, J., and Li, Q. (2003). Review of the in vivo functions of the p160 steroid receptor coactivator family. Mol. Endocrinol. 17, 1681–1692.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, S., Zawel, L., Lengauer, C., Kinzler, K.W., and Vogelstein, B. (1998). Characterization of human FAST-1, a TGF β and activin signal transducer. Mol. Cell 2, 121–127.

    Article  PubMed  CAS  Google Scholar 

  • Zwart, W., Griekspoor, A., Berno, V., Lakeman, K., Jalink, K., Mancini, M., Neefjes, J., and Michalides, R. (2007). PKA-induced resistance to tamoxifen is associated with an altered orientation of ERα towards co-activator SRC-1. EMBO J. 26, 3534–3544.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kwang-Youl Lee or Chang-Yeol Yeo.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Yum, J., Jeong, H.M., Kim, S. et al. PKA-Mediated stabilization of FoxH1 negatively regulates ERα activity. Mol Cells 28, 67–71 (2009). https://doi.org/10.1007/s10059-009-0099-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0099-7

Keywords

Navigation