Molecules and Cells

, Volume 27, Issue 5, pp 503–513 | Cite as

Basement membrane proteoglycans: Modulators Par Excellence of cancer growth and angiogenesis

  • Renato V. Iozzo
  • Jason J. Zoeller
  • Alexander Nyström
Minireview

Abstract

Proteoglycans located in basement membranes, the nanostructures underling epithelial and endothelial layers, are unique in several respects. They are usually large, elongated molecules with a collage of domains that share structural and functional homology with numerous extracellular matrix proteins, growth factors and surface receptors. They mainly carry heparan sulfate side chains and these contribute not only to storing and preserving the biological activity of various heparan sulfate-binding cytokines and growth factors, but also in presenting them in a more Ȍactive configurationȍ to their cognate receptors. Abnormal expression or deregulated function of these proteoglycans affect cancer and angiogenesis, and are critical for the evolution of the tumor microenvironment. This review will focus on the functional roles of the major heparan sulfate proteoglycans from basement membrane zones: perlecan, agrin and collagen XVIII, and on their roles in modulating cancer growth and angiogenesis.

Keywords

agrin angiogenesis cancer collagen XVIII endorepellin endostatin heparan sulfate proteoglycans perlecan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdollahi, A., Hahnfeldt, P., Maercker, C., Gröne, H.-J., Debus, J., Ansorge, W., Folkman, J., Hlatky, L., and Huber, P.E. (2004). Endostatin’s antioangiogenic signaling network. Mol. Cell l3, 649–663.CrossRefGoogle Scholar
  2. Adatia, R., Albini, A., Carlone, S., Giunciuglio, D., Benelli, R., Santi, L., and Noonan, D.M. (1998). Suppression of invasive behavior of melanoma cells by stable expression of anti-sense perlecan cDNA. Ann. Oncol. 8, 1257–1261.CrossRefGoogle Scholar
  3. Adkins, J.N., Varnum, S.M., Auberry, K.J., Moore, R.J., Angell, N.H., Smith, R.D., Springer, D.L., and Pounds, J.G. (2002). Toward a human blood serum proteome. Analysis by multidimensional separation coupled with mass spectrometry. Mol. Cell. Proteom. 1, 947–955.CrossRefGoogle Scholar
  4. Arikawa-Hirasawa, E., Watanabe, E., Takami, H., Hassell, J.R., and Yamada, Y. (1999). Perlecan is essential for cartilage and cephalic development. Nature Genet. 23, 354–358.PubMedCrossRefGoogle Scholar
  5. Aviezer, D., Hecht, D., Safran, M., Eisinger, M., David, G., and Yayon, A. (1994). Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell 79, 1005–1013.PubMedCrossRefGoogle Scholar
  6. Aviezer, D., Iozzo, R.V., Noonan, D.M., and Yayon, A. (1997). Suppression of autocrine and paracrine functions of basic fibroblast growth factor by stable expression of perlecan antisense cDNA. Mol. Cell. Biol. 17, 1938–1946.PubMedGoogle Scholar
  7. Baerwald-De La Torre, K., Winzen, U., Halfter, W., and Bixby, J.L. (2004). Glycosaminoglycan-dependent and -independent inhibition of neurite outgrowth by agrin. J. Neurochem. 90, 50–61.PubMedCrossRefGoogle Scholar
  8. Batmunkh, E., Tátrai, P., Szabó, E., Lódi, C., Holczbauer, A., Páska, C., Kupcsulik, P., Kiss, A., Schaff, Z., and Kovalszky, I. (2007). Comparison of the expression of agrin, a basement membrane heparan sulfate proteoglycan, in cholangiocarcinoma and hepatocellular carcinoma. Hum. Pathol. 38, 1508–1515.PubMedCrossRefGoogle Scholar
  9. Bezakova, G., and Rüegg, M.A. (2003). New insights into the roles of agrin. Nature Rev. Mol. Cell Biol. 4, 295–308.CrossRefGoogle Scholar
  10. Bix, G., and Iozzo, R.V. (2005). Matrix revolutions: “tails” of basement-membrane components with angiostatic functions. Trends Cell Biol. 15, 52–60.PubMedCrossRefGoogle Scholar
  11. Bix, G., and Iozzo, R.V. (2008). Novel interactions of perlecan: Unraveling perlecan’s role in angiogenesis. Microsc. Res. 71, 339–348.CrossRefGoogle Scholar
  12. Bix, G., Fu, J., Gonzalez, E., Macro, L., Barker, A., Campbell, S., Zutter, M.M., Santoro, S.A., Kim, J.K., Hook, M., et al. (2004). Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through the α2β1 integrin. J. Cell Biol. 166, 97–109.PubMedCrossRefGoogle Scholar
  13. Bix, G., Castello, R., Burrows, M., Zoeller, J.J., Weech, M., Iozzo, R.A., Cardi, C., Thakur, M.T., Barker, C.A., Camphausen, K.C., et al. (2006). Endorepellin in vivo: targeting the tumor vasculature and retarding cancer growth and metabolism. J. Natl. Cancer Inst. 98, 1634–1646.PubMedCrossRefGoogle Scholar
  14. Bix, G., Iozzo, R.A., Woodall, B., Burrows, M., McQuillan, A., Campbell, S., Fields, G.B., and Iozzo, R.V. (2007). Endorepellin, the C-terminal angiostatic module of perlecan, enhances collagen-platelet responses via the α2β1 integrin receptor. Blood 109, 3745–3748.PubMedCrossRefGoogle Scholar
  15. Burgess, R.W., Dickman, D.K., Nunez, L., Glass, D.J., and Sanes, J.R. (2002). Mapping sites responsible for interactions of agrin with neurons. J. Neurochem. 83, 271–284.PubMedCrossRefGoogle Scholar
  16. Cailhier, J.-F., Sirois, I., Raymond, M.-A., Lepage, S., Laplante, P., Brassard, N., Prat, A., Iozzo, R.V., Pshezhetsky, A.V., and Hebert, M.-J. (2008). Caspase-3 activation triggers extracellular release of cathepsin L and endorepellin proteolysis. J. Biol. Chem. 283, 27220–27229.PubMedCrossRefGoogle Scholar
  17. Chang, J.W., Kang, U.-B., Kim, D.H., Yi, J.K., Lee, J.W., Noh, D.-Y., Lee, C., and Yu, M.-H. (2008). Identification of circulating endorepellin LG3 fragment: Potential use as a serological biomarker for breast cancer. Proteomics Clin. Appl. 2, 23–32.CrossRefGoogle Scholar
  18. Clamp, A.R., and Jayson, G.C. (2005). The clinical potential of antiangiogenic fragments of extracellular matrix proteins. Br. J. Cancer 93, 967–972.PubMedCrossRefGoogle Scholar
  19. Cohen, I.R., Murdoch, A.D., Naso, M.F., Marchetti, D., Berd, D., and Iozzo, R.V. (1994). Abnormal expression of perlecan proteoglycan in metastatic melanomas. Cancer Res. 54, 5771–5774.PubMedGoogle Scholar
  20. Costell, M., Gustafsson, E., Aszodi, A., Morgelin, M., Bloch, W., Hunziker, E., Addicks, K., Timpl, R., and Fassler, R. (1999). Perlecan maintains the integrity of cartilage and some basement membranes. J. Cell Biol. 147, 1109–1122.PubMedCrossRefGoogle Scholar
  21. Costell, M., Carmona, R., Gustafsson, E., Gonzalez-Iriarte, M., Fassler, R., and Munoz-Chapuli, R. (2002). Hyperplastic conotruncal endo-cardial cushions and transposition of great arteries in perlecan-null mice. Circ. Res. 91, 158–164.PubMedCrossRefGoogle Scholar
  22. Denzer, A.J., Sculthess, T., Fauser, C., Schumacher, B., Kammerer, R.A., Engel, J., and Ruegg, M.A. (1998). Electron microscopic structure of agrin and mapping of its binding site in laminin-1. EMBO J. 17, 335–343.PubMedCrossRefGoogle Scholar
  23. Dhanabal, M., Ramchandran, R., Waterman, M.J., Lu, H., Knebelmann, B., Segal, M., and Sukhatme, V.P. (1999). Endostatin induces endothelial cell apoptosis. J. Biol. Chem. 274, 11721–11726.PubMedCrossRefGoogle Scholar
  24. Donahue, J.E., Berzin, T.M., Rafii, M.S., Glass, D.J., Yancopoulos, G.D., Fallon, J.R., and Stopa, E.G. (1999). Agrin in Alzheimer’s disease: Altered solubility and abnormal distribution within microvasculature and brain parenchyma. Proc. Natl. Acad. Sci. USA 96, 6468–6472.PubMedCrossRefGoogle Scholar
  25. Dong, S., Cole, G.J., and Halfter, W. (2003). Expression of collagen xViii and localization of its glycosaminoglycan attachment sites. J. Biol. Chem. 278, 1700–1707.PubMedCrossRefGoogle Scholar
  26. Elamaa, H., Snellman, A., Rehn, M., Autio-Harmainen, H., and Pihlajaniemi, T. (2003). Characterization of the human type XVIII collagen gene and proteolytic processing and tissue location of the variant containing a frizzled motif. Matrix Biol. 22, 427–442.PubMedCrossRefGoogle Scholar
  27. Farach-Carson, M.C., and Carson, D.D. (2007). Perlecan - a multi- functional extracellular proteoglycan scaffold. Glycobiology 17, 897–905.PubMedCrossRefGoogle Scholar
  28. Ferreras, M., Felbor, U., Lenhard, T., Olsen, B.R., and Delaisse, J.(2000). Generation and degradation of human endostatin proteins by various proteinases. FEBS Lett. 486, 247–251.PubMedCrossRefGoogle Scholar
  29. Fukai, N., Eklund, L., Marneros, A.G., Oh, S.P., Keene, D.R., Tamarkin, L., Niemela, M., Ilves, M., Li, E., Pihlajaniemi, T., et al. (2002). Lack of collagen XVIII/endostatin results in eye abnormalities. EMBO J. 21, 1535–1544.PubMedCrossRefGoogle Scholar
  30. Fuki, I., Iozzo, R.V., and Williams, K.J. (2000). Perlecan heparan sulfate proteoglycan. A novel receptor that mediates a distinct pathway for ligand catabolism. J. Biol. Chem. 275, 25742–25750.PubMedCrossRefGoogle Scholar
  31. Gautam, M., Noakes, P.G., Moscoso, L., Rupp, F., Scheller, R.H., Merlie, J.P., and Sanes, J.R. (1996). Defective neuromuscular synaptogenesis in agrin-deficient mice. Cell 85, 525–535.PubMedCrossRefGoogle Scholar
  32. Gesemann, M., Brancaccio, A., Schumacher, B., and Ruegg, M.A. (1998). Agrin is a high-affinity binding protein of dystroglycan in non-muscle tissue. J. Biol. Chem. 273, 600–605.PubMedCrossRefGoogle Scholar
  33. Ghiselli, G., Eichstetter, I., and Iozzo, R.V. (2001). A role for the perlecan protein core in the activation of the keratinocyte growth factor receptor. Biochem. J. 359, 153–163.PubMedCrossRefGoogle Scholar
  34. Gianazza, E., Wait, R., Begum, S., Eberini, I., Campagnoli, M., Labo, S., and Galliano, M. (2007). Mapping the 5-50-kDa fraction of human amniotic fluid proteins by 2-DE and ESI-MS. Proteomics Clin. Appl. 1, 167–175.CrossRefGoogle Scholar
  35. Gonzalez, E.M., Reed, C.C., Bix, G., Fu, J., Zhang, Y., Gopalakrishnan, B., Greenspan, D.S., and Iozzo, R.V. (2005). BMP-1/Tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan. J. Biol. Chem. 280, 7080–7087.PubMedCrossRefGoogle Scholar
  36. González-Iriarte, M., Carmona, R., Pérez-Pomares, J.M., Macías, D., Costell, M., and Munoz-Chápuli, R. (2003). Development of the coronary arteries in a murine model of transposition of great arteries. J. Mol. Cell. Cardio. 35, 795–802.CrossRefGoogle Scholar
  37. Grenache, D.G., Zhang, Z., Wells, L.E., Santoro, S.A., Davidson, J.M., and Zutter, M.M. (2006). Wound healing in the α2β1 integrin-deficient mouse: altered keratinocyte biology and dys-regulated matrix metalloproteinase expression. J. Invest. Dermatol. 127, 455–466.PubMedCrossRefGoogle Scholar
  38. Groffen, A.J.A., Buskens, C.A.F., van Kuppevelt, T.H., Veerkamp, J.H., Monnens, L.A.H., and van den Heuvel, L.P.W.J. (1998). Primary structure and high expression of human agrin in basement membranes of adult lung and kidney. Eur. J. Biochem. 254, 123–128.PubMedCrossRefGoogle Scholar
  39. Grønborg, M., Kristiansen, T.Z., Iwahori, A., Chang, R., Reddy, R., Sato, N., Molina, H., Jensen, O.N., Hruban, R.H., Goggins, M.G., et al. (2006). Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol. Cell. Proteom. 5, 157–171.CrossRefGoogle Scholar
  40. Halfter, W., Dong, S., Schurer, B., and Cole, G.J. (1998). Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J. Biol. Chem. 273, 25404–25412.PubMedCrossRefGoogle Scholar
  41. Handler, M., Yurchenco, P.D., and Iozzo, R.V. (1997). Developmental expression of perlecan during murine embryogenesis. Dev. Dyn. 210, 130–145.PubMedCrossRefGoogle Scholar
  42. Hassell, J.R., Yamada, Y., and Arikawa-Hirasawa, E. (2003). Role of perlecan in skeletal development and diseases. Glycoconj. J. 19, 263–267.CrossRefGoogle Scholar
  43. Hilgenberg, L.G.W., Su, H., Gu, H., O’Dowd, D.K., and Smith, M.A. (2006). α3Na+/K+-ATPase is a neuronal receptor for agrin. Cell 125, 359–369.PubMedCrossRefGoogle Scholar
  44. Hurskainen, M., Eklund, L., Hägg, P.O., Fruttiger, M., Sormunen, R., IIves, M., and Pihlajaniemi, T. (2005). Abnormal maturation of the retinal vasculature in type xVlII collagen/endostatin deficient mice and changes in retinal glial cells due to lack of collagen types XV and XVIII. FASEB J. 19, 1564–1666.PubMedGoogle Scholar
  45. Iozzo, R.V. (1994). Perlecan: a gem of a proteoglycan. Matrix Biol. 14, 203–208.PubMedCrossRefGoogle Scholar
  46. Iozzo, R.V. (1998). Matrix proteoglycans: from molecular design to cellular function. Annu. Rev. Biochem. 67, 609–652.PubMedCrossRefGoogle Scholar
  47. Iozzo, R.V. (2005). Basement membrane proteoglycans: from cellar to ceiling. Nature Rev. Mol. Cell Biol. 6, 646–656.CrossRefGoogle Scholar
  48. Iozzo, R.V., and Murdoch, A.D. (1996). Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J. 10, 598–614.PubMedGoogle Scholar
  49. Iozzo, R.V., and San Antonio, J.D. (2001). Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J. Clin. Invest. 108, 349–355.Google Scholar
  50. Iozzo, R.V., Cohen, I.R., Grassel, S., and Murdoch, A.D. (1994). The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem. J. 302, 625–639.PubMedGoogle Scholar
  51. Iozzo, R.V., Pillarisetti, J., Sharma, B., Murdoch, A.D., Danielson, K.G., Uitto, J., and Mauviel, A. (1997). Structural and functional characterization of the human perlecan gene promoter. Transcriptional activation by transforming growth factor-p via a nuclear factor 1-binding element. J. Biol. Chem. 272, 5219–5228.PubMedCrossRefGoogle Scholar
  52. Kadenhe-Chiweshe, A., Papa, J., McCrudden, K.W., Frischer, J., Bae, J.-O., Huang, J., Fisher, J., Lefkowitch, J.H., Feirt, N., Rudge, J., et al. (2008). Sustained VEGF blockade results in microenvironmental sequestration of VEGF by tumors and persistent VEGF receptor-2 activation. Mol. Cancer Res. 6, 1–9.PubMedCrossRefGoogle Scholar
  53. Karumanchi, S.A., Jha, V., Ramchandran, R., Karihaloo, A., Tsiokas, L., Chan, B., Dhanabai, M., Hanai, J.-C., Venkataraman, G., Shriver, Z., et al. (2001). Cell surface glypicans are low-affinity endostatin receptors. Mol. Cell 7, 811–822.PubMedCrossRefGoogle Scholar
  54. Kim, Y.-M., Hwang, S., Kim, Y.-M., Pyun, B.-J., Kim, T.-Y., Lee, S.-T., Gho, Y.S., and Kwon, Y.-G. (2002). Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J. Biol. Chem. 277, 27872–27879.PubMedCrossRefGoogle Scholar
  55. Kim, N., Stiegler, A.L., Cameron, T.O., Hallock, P.T., Gomez, A.M., Huang, J.H., Hubbard, S.R., Dustin, M.L., and Burden, S.J. (2008). Lrp4 is a receptor for agrin and forms a complex with MuSK. Cell 135, 334–342.PubMedCrossRefGoogle Scholar
  56. Klein, G., Conzelmann, S., Beck, S., Timpl, R., and Muller, C.A. (1995). Perlecan in human bone marrow: a growth-factor presenting, but anti-adhesive, extracellular matrix component for hematopoietic cells. Matrix Biol. 14, 457–465.PubMedCrossRefGoogle Scholar
  57. Krishna, J., Shah, Z.A., Merchant, M., Klein, J.B., and Gozal, D. (2006). Urinary protein expression patterns in children with sleep-disordered breathing: preliminary findings. Sleep Med. 7, 221–227.PubMedCrossRefGoogle Scholar
  58. Kuo, C.J., LaMontagne, K.R., Garcia-Cardena, G., Ackley, B.D., Kalman, D., Park, S., Christofferson, R., Kamihara, J., Ding, Y.-H., Lo, K.-M., et al. (2001). Oligomerization-dependent regulationof motility and morphogenesis by the collagen XVIII NC1/endostatin domain. J. Cell Biol. 152, 1233–1246.PubMedCrossRefGoogle Scholar
  59. Laplante, P., Raymond, M.A., Gagnon, G., Vigneault, N., Sasseville, A.M., Langelier, Y., Bernard, M., Raymond, Y., and Hebert, M.-J. (2005). Novel fibrogenic pathways are activated in response to endothelial apoptosis: implications in the pathophysiology of systemic sclerosis. J. Immunol. 174, 5740–5749.PubMedGoogle Scholar
  60. Laplante, P., Raymond, M.-A., Labelle, A., Abe, J.-I., Iozzo, R.V., and Hebert, M.-J. (2006). Perlecan proteolysis induces α2β1 integrin and src-family kinases dependent anti-apoptotic pathway in fibroblasts in the absence of focal adhesion kinase activation. J. Biol. Chem. 281, 30383–30392.PubMedCrossRefGoogle Scholar
  61. Li, Q., and Olsen, B.R. (2004). Increased angiogenic response in aortic explants of collagen XVIII/endostatin-null mice. Am. J. Pathol. 165, 415–424.PubMedGoogle Scholar
  62. Lin, W., Burgess, R.W., Dominguez, B., Pfaff, S.L., Sanes, J.R., and Lee, K.-F. (2001). Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410, 1057–1064.PubMedCrossRefGoogle Scholar
  63. Lin, S., Maj, M., Bezakova, G., Magyar, J.P., Brenner, H.R., and Ruegg, M.A. (2008). Muscle-wide secretion of a miniaturized form of neural agrin rescues focal neuromuscular innervation in agrin mutant mice. Proc. Natl. Acad. Sci. USA 105, 11406–11411.PubMedCrossRefGoogle Scholar
  64. Marneros, A.G., and Olsen, B.R. (2005). Physiological role of collagen XVIII and endostatin. FASEB J. 19, 716–728.PubMedCrossRefGoogle Scholar
  65. Marneros, A.G., Keene, D.R., Hansen, U., Fukai, N., Moulton, K., Goletz, P.L., Moiseyev, G., Pawlyk, B.S., Halfter, W., Dong, S., et al. (2004). Collagen XVIII/endostatin is essential for vision and retinal pigment epithelial function. EMBO J. 23, 89–99.PubMedCrossRefGoogle Scholar
  66. Marneros, A.G., She, H., Zambarakji, H., Hashizume, H., Connolly, E.J., Kim, I., Gragoudas, E.S., Miller, J.W., and Olsen, B.R. (2007). Endogenous endostatin inhibits choroidal neovascularization. FASEB J. 21, 3809–3818.PubMedCrossRefGoogle Scholar
  67. Mathiak, M., Yenisey, C., Grant, D.S., Sharma, B., and Iozzo, R.V. (1997). A role for perlecan in the suppression of growth and invasion in fibrosarcoma cells. Cancer Res. 57, 2130–2136.PubMedGoogle Scholar
  68. Matsumoto-Miyai, K., Sokolowska, E., Zurlinden, A., Gee, C.E., Luscher, D., Hettwer, S., Wolfel, J., Ladner, A.P., Ster, J., Gerber, U., et al. (2009). Coincident pre- and postsynaptic activation induces dendritic filopodia via neurotrypsin-dependent agrin cleavage. Cell 136, 1161–1171.PubMedCrossRefGoogle Scholar
  69. Menzel, O., Bekkeheien, R.C., Reymond, A., Fukai, N., Boye, E., Kosztolanyi, G., Aftimos, S., Deutsch, S., Scott, H.S., Olsen, B.R., et al. (2004). Knobloch syndrome: novel mutations in COL18A1, evidence for genetic heterogeneity, and a functionally impaired polymorphism in endostatin. Hum. Mutat. 23, 77–84.PubMedCrossRefGoogle Scholar
  70. Mongiat, M., Taylor, K., Otto, J., Aho, S., Uitto, J., Whitelock, J., and Iozzo, R.V. (2000). The protein core of the proteoglycan perlecan binds specifically to fibroblast growth factor-7. J. Biol. Chem. 275, 7095–7100.PubMedCrossRefGoogle Scholar
  71. Mongiat, M., Otto, J., Oldershaw, R., Ferrer, F., Sato, J.D., and Iozzo, R.V. (2001). Fibroblast growth factor-binding protein is a novel partner for perlecan protein core. J. Biol. Chem. 276, 10263–10271.PubMedCrossRefGoogle Scholar
  72. Mongiat, M., Sweeney, S., San Antonio, J.D., Fu, J., and Iozzo, R.V. (2003). Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J. Biol. Chem. 278, 4238–4249.PubMedCrossRefGoogle Scholar
  73. Moulton, K.S., Olsen, B.R., Sonn, S., Fukai, N., Zurakowski, D., and Zeng, X. (2004). Loss of collagen XVIII enhances neovasculari zation and vascular permeability in atherosclerosis. Circulation 110, 1330–1336.PubMedCrossRefGoogle Scholar
  74. Nitkin, R.M., Smith, M.A., Magill, C., Fallon, J.R., Yao, Y.-M.M., Wallace, B.G., and McMahan, U.J. (1987). Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J. Cell Biol. 105, 2471–2478.PubMedCrossRefGoogle Scholar
  75. Nugent, M.A., and Iozzo, R.V. (2000). Fibroblast growth factor-2. Int. J. Biochem. Cell Biol. 32, 115–120.PubMedCrossRefGoogle Scholar
  76. Nugent, M.A., Nugent, H.M., Iozzo, R.V., Sanchack, K., and Edelman, E.R. (2000). Perlecan is required to inhibit thrombosis after deep vascular injury and contributes to endothelial cell-mediated inhibition of intimal hyperplasia. Proc. Natl. Acad. Sci. USA 97, 6722–6727.PubMedCrossRefGoogle Scholar
  77. Nyberg, P., Xie, L., and Kalluri, R. (2005). Endogenous inhibitors of angiogenesis. Cancer Res. 65, 3967–3979.PubMedCrossRefGoogle Scholar
  78. Oda, O., Shinzato, T., Ohbayashi, K., Takai, I., Kunimatsu, M., Maeda, K., and Yamanaka, N. (1996). Purification and characterization of perlecan fragment in urine of end-stage renal failure patients. Clin. Chim. Acta 255, 119–132.PubMedCrossRefGoogle Scholar
  79. Oh, S.P., Kamagata, Y., Muragaki, Y., Timmons, S., Ooshima, A., and Olsen, B.R. (1994a). Isolation and sequencing of cDNAs for proteins with multiple domains of Gly-Xaa-Yaa repeats identify a distinct family of collagenous proteins. Proc. Natl. Acad. Sci. USA 91, 4229–4233.PubMedCrossRefGoogle Scholar
  80. Oh, S.P., Warman, M.L., Seldin, M.F., Cheng, S.-D., Knoll, J.H.M., Timmons, S., and Olsen, B.R. (1994b). Cloning of cDNA and genomic DNA encoding human type xVlII collagen and localization of the a1(XVIII) collagen gene to mouse chromosome 10 and human chromosome 21. Genomics 19, 494–499.PubMedCrossRefGoogle Scholar
  81. O’Reilly, M.S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W.S., Flynn, E., Birkhead, J.R., Olsen, B.R., and Folkman, J. (1997). Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285.PubMedCrossRefGoogle Scholar
  82. O’Riordan, E., Orlova, T.N., Mendelev, N., Patschan, D., Kemp, R., Chander, P.N., Hu, R., Hao, G., Gross, S.S., Iozzo, R.V., et al. (2008). Urinary proteomic analysis of chronic renal allograft nephropathy. Proteomics Clin. Appl. 2, 1025–1035.CrossRefGoogle Scholar
  83. Raymond, M.-A., Desormeaux, A., Laplante, P., Vigneault, N., Filep, J.G., Landry, K., Pshezhetsky, A.V., and Hebert, M.-J. (2004). Apoptosis of endothelial cells triggers a caspase-dependent anti-apoptotic paracrine loop active on vascular smooth muscle cells. FASEB J. 18, 705–707.PubMedGoogle Scholar
  84. Rehn, M., Hintikka, E., and Pihlajaniemi, T. (1994). Primary structure of the a1 chain of mouse type XVIII collagen, partial structure of the corresponding gene, and comparison of the a1(XVIII) chain with its homologue, the a1 (XV) collagen chain. J. Biol. Chem. 269, 13929–13935.PubMedGoogle Scholar
  85. Rehn, M., Veikkola, T., Kukk-Valdre, E., Nakamura, H., Ilmonen, M., Lombardo, C.R., Pihlajaniemi, T., Alitalo, K., and Vuori, K. (2001). Interaction of endostatin with integrins implicated in angiogenesis. Proc. Natl. Acad. Sci. USA 98, 1024–1029.PubMedCrossRefGoogle Scholar
  86. Reif, R., Sales, S., Hettwer, S., Dreier, B., Gisler, C., Wolfel, J., Luscher, D., Zurlinden, A., Stephan, A., Ahmed, S., et al. (2007). Specific cleavage of agrin by neurotrypsin, a synaptic protease linked to mental retardation. FASEB J. 21, 3468–3478.PubMedCrossRefGoogle Scholar
  87. Reiland, J., Sanderson, R.D., Waguespack, M., Barker, S.A., Long, R., Carson, D.D., and Marchetti, D. (2004). Heparanase degrades syndecan-1 and perlecan heparan sulfate: functional implications for tumor cell invasion. J. Biol. Chem. 279, 8047–8055.PubMedCrossRefGoogle Scholar
  88. Robinson, C.J., Mulloy, B., Gallagher, J.T., and Stringer, S.E. (2006). VEGF165-binding sites within heparan sulfate encompass two highly sulfated domains and can be liberated by K5 lyase. J. Biol. Chem. 281, 1731–1740.PubMedCrossRefGoogle Scholar
  89. Rossi, M., Morita, H., Sormunen, R., Airenne, S., Kreivi, M., Wang, L., Fukai, N., Olsen, B.R., Tryggvason, K., and Soininen, R. (2003). Heparan sulfate chains of perlecan are indispensable in the lens capsule but not in the kidney. EMBO J. 22, 236–245.PubMedCrossRefGoogle Scholar
  90. Saarela, J., Ylikarppa, R., Rehn, M., Purmonen, S., and Pihlajaniemi, T. (1998). Complete primary structure of two variant forms of 512 Basement Membrane Proteoglycans in Cancer and Angiogenesis human type XVIII collagen and tissue-specific differences in the expression of the corresponding transcripts. Matrix Biol. 16, 319–328.PubMedCrossRefGoogle Scholar
  91. Sasaki, T., Fukai, N., Mann, K., Gohring, W., Olsen, B.R., and Timpl, R. (1998). Structure, function and tissue forms of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin. EMBO J. 17, 4249–4256.PubMedCrossRefGoogle Scholar
  92. Sauter, B.V., Martinet, O., Zhang, W.-J., Mandeli, J., and Woo, S.L.C. (2001). Adenovirus-mediated gene transfer of endostatin in vivo results in high level of transgene expression and inhibition of tumor growth and metastasis. Proc. Natl. Acad. Sci. USA 97, 4802–4807.CrossRefGoogle Scholar
  93. Savoré, C., Zhang, C., Muir, C., Liu, R., Wyrwa, J., Shu, J., Zhau, H.E., Chung, L.W., Carson, D.D., and Farach-Carson, M.C. (2005). Perlecan knockdown in metastatic prostate cancer cells reduces heparin-binding growth factor responses in vitro and tumor growth in vivo. Clin. Exp. Metastasis 22, 377–390.PubMedCrossRefGoogle Scholar
  94. Scotton, P., Bleckmann, D., Stebler, M., Sciandra, F., Brancaccio, A., Meier, T., Stetefeld, J., and Ruegg, M.A. (2006). Activation of muscle-specific receptor tyrosine kinase and binding to dystroglycan are regulated by alternative mRNA splicing of agrin. J. Biol. Chem. 281, 36835–36845.PubMedCrossRefGoogle Scholar
  95. Senger, D.R., Perruzzi, C.A., Streit, M., Koteliansky, V.E., de Fougerolles, A.R., and Detmar, M. (2002). The a1p1 and α2β1 integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am. J. Pathol. 160, 195–204.PubMedGoogle Scholar
  96. Seppinen, L., Sormunen, R., Soini, Y., Elamaa, H., Heljasvaara, R., and Pihlajaniemi, T. (2008). Lack of collagen XVIII accelerates cutaneous wound healing, while overexpression of its endostatin domain leads to delayed healing. Matrix Biol. 27, 535–546.PubMedCrossRefGoogle Scholar
  97. Sharma, B., Handler, M., Eichstetter, I., Whitelock, J., Nugent, M.A., and Iozzo, R.V. (1998). Antisense targeting of perlecan blocks tumor growth and angiogenesis in vivo. J. Clin. Invest. 102, 1599–1608.PubMedCrossRefGoogle Scholar
  98. Shichiri, M., and Hirata, Y. (2001). Antiangiogenesis signals by endostatin. FASEB J. 15, 1044–1053.PubMedCrossRefGoogle Scholar
  99. Sudhakar, A., Sugimoto, H., Yang, C., Lively, J., Zeisberg, M., and Kalluri, R. (2003). Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by avp3 and a5p1 integrins. Proc. Natl. Acad. Sci. USA 100, 4766–4771.PubMedCrossRefGoogle Scholar
  100. Sund, M., Zeisberg, M., and Kalluri, R. (2005). Endogenous stimulators and inhibitors of angiogenesis in gastrointestinal cancers: basic science to clinical application. Gastroenterology 129, 2076–2091.PubMedCrossRefGoogle Scholar
  101. Suzuki, O.T., Sertie, A.L., Der, K.V., Kok, F., Carpenter, M., Murray, J., Czeizel, A.E., Kliemann, S.E., Rosemberg, S., Monteiro, M., et al. (2002). Molecular analysis of collagen XVIII reveals novel mutations, presence of a third isoform, and possible genetic heterogeneity in Knobloch syndrome. Am. J. Hum. Genet. 71, 1320–1329.PubMedCrossRefGoogle Scholar
  102. Sweeney, S.M., DiLullo, G., Slater, S.J., Martinez, J., Iozzo, R.V., Lauer-Fields, J.L., Fields, G.B., and San Antonio, J.D. (2003). Angiogenesis in collagen I requires α2β1 ligation of a GFP*GER sequence and possible p38 MAPK activation and focal adhesion disassembly. J. Biol. Chem. 278, 30516–30524.PubMedCrossRefGoogle Scholar
  103. Tátrai, P., Dudás, J., Batmunkh, E., Máthé, M., Zalatnai, A., Schaff, Z., Ramadori, G., and Kovalszky, I. (2006). Agrin, a novel basement membrane component in human rat and liver, accumulates in cirrhosis and hepatocellular carcinoma. Lab. Invest. 86, 1149–1160.PubMedGoogle Scholar
  104. Thadikkaran, L., Crettaz, D., Siegenthaler, M.A., Gallot, D., Sapin, V., Iozzo, R.V., Queloz, P.A., Schneider, P., and Tissot, J.D. (2005). The role of proteomics in the assessment of premature rupture of fetal membranes. Clin. Chim. Acta 360, 27–36.PubMedCrossRefGoogle Scholar
  105. Tran, P.-K., Tran-Lundmark, K., Soininen, R., Tryggvason, K., Thyberg, J., and Hedin, U. (2004). Increased intimal hyperplasia and smooth muscle cell proliferation in transgenic mice with heparan sulfate-deficient perlecan. Circ. Res. 94, 550–558.PubMedCrossRefGoogle Scholar
  106. Tsangaris, G.T., Karamessinis, P., Kolialexi, A., Garbis, S.D., Antsaklis, A., Mavrou, A., and Fountoulakis, M. (2006). Proteomic analysis of amniotic fluid in pregnancies with Down syndrome. Proteomics 6, 4410–4419.PubMedCrossRefGoogle Scholar
  107. Utriainen, A., Sormunen, R., Kettunen, M., Carvalhaes, L.S., Sajanti, E., Eklund, L., Kauppinen, R., Kitten, G.T., and Pihlajaniemi, T. (2004). Structurally altered basement membranes and hydrocephalus in a type XVIII collagen deficient mouse line. Human Mol. Gen. 13, 2089–2099.CrossRefGoogle Scholar
  108. Verbeek, M.M., Otte-Holler, I., van den Born, J., van den Heuvel, L.P.W.J., David, G., Wesseling, P., and de Waal, R.M. (1999). Agrin is a major heparan sulfate proteogl can accumulating in Alzheimer’s disease brain. Am. J. Pathol. 155, 2115–2125.PubMedGoogle Scholar
  109. Vuadens, F., Benay, C., Crettaz, D., Gallot, D., Sapin, V., Schneider, P., Binevenut, W.-V., Lémery, D., Quadroni, M., Dastugue, B., et al. (2003). Identification of biologic markers of the premature rupture of fetal membranes: proteomic approach. Proteomics 3, 1521–1525.PubMedCrossRefGoogle Scholar
  110. Warth, A., Kröger, S., and Wolburg, H. (2004). Redistribution of aquaporin-4 in human glioblastoma correlates with loss of agrin immunoreactivity from brain capillary basal laminae. Acta Neuropathol. 107, 311–318.PubMedCrossRefGoogle Scholar
  111. West, L., Govindraj, P., Koob, T.J., and Hassell, J.R. (2006). Changes in perlecan during chondrocyte differentiation in the fetal bovine rib growth plate. J. Orthop. Res. 24, 1317–1326.PubMedCrossRefGoogle Scholar
  112. Whitelock, J.M., and Iozzo, R.V. (2005). Heparan sulfate: a complex polymer charged with biological activity. Chem. Rev. 105, 2745–2764.PubMedCrossRefGoogle Scholar
  113. Whitelock, J.M., Murdoch, A.D., Iozzo, R.V., and Underwood, P.A. (1996). The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin and heparanases. J. Biol. Chem. 271, 10079–10086.PubMedCrossRefGoogle Scholar
  114. Whitelock, J.M., Graham, L.D., Melrose, J., Murdoch, A.D., Iozzo, R.V., and Underwood, P.A. (1999). Human perlecan immunopurified from different endothelial cell sources has different adhesive properties for vascular cells. Matrix Biol. 18, 163–178.PubMedCrossRefGoogle Scholar
  115. Whitelock, J.M., Melrose, J., and Iozzo, R.V. (2008). Diverse cell signaling events modulated by perlecan. Biochemistry 47, 11174–11183.PubMedCrossRefGoogle Scholar
  116. Wickström, S.A., Alitalo, K., and Keski-Oja, J. (2005). Endostatin signaling and regulation of endothelial cell-matrix interactions. Adv. Cancer Res. 94, 197–229.PubMedCrossRefGoogle Scholar
  117. Winzen, U., Cole, G.J., and Halfter, W. (2003). Agrin is a chimeric proteoglycan with the attachment sites for heparan sulfate/chondroitin sulfate located in two multiple serine-glycine clusters. J. Biol. Chem. 278, 30106–30114.PubMedCrossRefGoogle Scholar
  118. Witmer, A.N., van den Born, J., Vrensen, G.F.J.M., and Schlingemann, R.O. (2001). Vascular localization of heparan sulfate proteoglycans in retinas of patients with diabetes mellitus and in VEGF-induced retinopathy using domain-specific antibodies. Curr. Eye Res. 22, 190–197.PubMedCrossRefGoogle Scholar
  119. Woodall, B.P., Nystrom, A., Iozzo, R.A., Eble, J.A., Niland, S., Krieg, T., Eckes, B., Pozzi, A., and Iozzo, R.V. (2008). Integrin α2β1 is the required receptor for endorepellin angiostatic activity. J. Biol. Chem. 283, 2335–2343.PubMedCrossRefGoogle Scholar
  120. Ylikärppä, R., Eklund, L., Sormunen, R., Kontiola, A.I., Utriainen, A., Määttä, M., Fukai, N., and Olsen, B.R. (2003). Lack of type XVIII collagen results in anterior ocular defects. FASEB J. 17, 2257–2259.PubMedGoogle Scholar
  121. Yurchenco, P.D., Amenta, P.S., and Patton, B.L. (2004). Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol. 22, 521–538.PubMedCrossRefGoogle Scholar
  122. Zatterstrom, U.K., Felbor, U., Fukai, N., and Olsen, B.R. (2000). Collagen XVIII/endostatin structure and functional role in angiogenesis. Cell Struct. Funct. 25, 97–101.PubMedCrossRefGoogle Scholar
  123. Zhang, J., Wang, Y., Chu, Y., Su, L., Gong, Y., Zhang, R., and Xiong, S. (2006). Agrin is involved in lymphocytes activation that is mediated by a-dystroglycan. FASEB J. 20, 50–58.PubMedCrossRefGoogle Scholar
  124. Zhang, Z., Ramirez, N.E., Yankeelov, T.E., Li, Z., Ford, L.E., Qi, Y., Pozzi, A., and Zutter, M.M. (2008). α2β1 integrin expression in the tumor microenvironment enhances tumor angiogenesis in a tumor cell-specific manner. Blood 111, 1980–1988.PubMedCrossRefGoogle Scholar
  125. Zhou, Z., Wang, J., Cao, R., Morita, H., Soininen, R., Chan, K.M., Liu, B., Cao, Y., and Tryggvason, K. (2004). Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate-deficient mice. Cancer Res. 64, 4699–4702.PubMedCrossRefGoogle Scholar
  126. Zoeller, J.J., and Iozzo, R.V. (2008). Proteomic profiling of endorepellin angiostatic activity on human endothelial cells. Proteome Sci. 6, 7.PubMedCrossRefGoogle Scholar
  127. Zoeller, J.J., McQuillan, A., Whitelock, J., Ho, S.-Y., and Iozzo, R.V. (2008). A central function for perlecan in skeletal muscle and cardiovascular development. J. Cell Biol. 181, 381–394.PubMedCrossRefGoogle Scholar
  128. Zorick, T.S., Mustacchi, Z., Bando, S.Y., Zatz, M., Moreira-Filho, C.A., Olsen, B., and Passos-Bueno, M.R. (2001). High serum endostatin levels in Down syndrome: Implications for improved treatment and prevention of solid tumors. Eur. J. Hum. Genet. 9, 811–814.PubMedCrossRefGoogle Scholar
  129. Zweers, M.C., Davidson, J.M., Pozzi, A., Hallinger, R., Janz, K., Quondamatteo, F., Leutgeb, B., Krieg, T., and Eckes, B. (2007). Integrin α2β1 is required for regulation of murine wound angiogenesis but is dispensable for reepithelialization. J. Invest. Dermatol. 127, 467–478.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2009

Authors and Affiliations

  • Renato V. Iozzo
    • 1
  • Jason J. Zoeller
    • 1
  • Alexander Nyström
    • 1
  1. 1.Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphia, PennsylvaniaUSA

Personalised recommendations