Advertisement

Review of Economic Design

, Volume 23, Issue 1–2, pp 75–89 | Cite as

The Borda rule and the pairwise-majority-loser revisited

  • Noriaki OkamotoEmail author
  • Toyotaka Sakai
Original Paper

Abstract

Jean-Charles de Borda introduced the Borda rule with the motivation of avoiding the so-called pairwise-majority-loser. We revisit this topic by examining the uniqueness of the Borda rule as a scoring rule that is consistent with the pairwise-majority-loser criterion. We first show that this uniqueness does not hold for any fixed population. In fact, when there are three alternatives and six voters, all scoring rules are consistent with the pairwise-majority-loser criterion. We then show that for each non-Borda scoring rule, there exists a population n such that the rule is not consistent with this criterion for all populations of size larger than n.

Keywords

Borda rule Social choice Pairwise-majority-loser Scoring rule Condorcet criterion 

JEL Classifiaction

D71 D63 

Notes

References

  1. de Borda J-C (1784) Mémoire sur les élections au scrutin, Histoire de l’Académie Royal des Sciences, pp 657–664Google Scholar
  2. de Condorcet M (1784) Sur les élections au scrutin, Histoire de l’Académie Royal des Sciences, pp 31–34Google Scholar
  3. de Condorcet M (1785) Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. Chelfea Publishing Company (1972)Google Scholar
  4. Fishburn PC (1974) Paradoxes of voting. Am Polit Sci Rev 68:537–546CrossRefGoogle Scholar
  5. Fishburn PC, Gehrlein WV (1976) Borda’s rule, positional voting, and Condorcet’s simple majority principle. Public Choice 28:79–88CrossRefGoogle Scholar
  6. Gehrlein WV (2006) Condorcet’s paradox. Springer, BerlinGoogle Scholar
  7. McLean I, Hewitt F (1994) Condorcet: foundations of social choice and political theory. Edward Elgar Publishing Limited, UKGoogle Scholar
  8. McLean I, Urken AB (1995) Classics of social choice. The University of Michigan Press, Ann ArborCrossRefGoogle Scholar
  9. Nurmi H (1999) Voting paradoxes and how to deal with them. Springer, LondonCrossRefGoogle Scholar
  10. Pattanaik PK (2002) Positional rules of collective decision-making. In: Arrow KJ, Sen AK, Suzumura K (eds) Handbook of social choice and welfare, (handbooks in economics), vol 1. North Holland, AmsterdamGoogle Scholar
  11. Saari DG (1989) A dictionary for voting paradoxes. J Econ Theory 48:443–475CrossRefGoogle Scholar
  12. Saari DG (1990) The Borda dictionary. Soc Choice Welf 7:279–317CrossRefGoogle Scholar
  13. Saari DG (1995) Basic geometry of voting. Springer, LondonCrossRefGoogle Scholar
  14. Saari DG (1999) Explaining all three-alternative voting outcomes. J Econ Theory 87:313–355CrossRefGoogle Scholar
  15. Saari DG (2006) Which is better: the Condorcet or Borda winner? Soc Choice Welf 26:107–129CrossRefGoogle Scholar
  16. Saari DG (2008) Disposing dictators, demystifying voting paradoxes: social choice analysis. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. Smith JH (1973) Aggregation of preferences with variable electorate. Econometrica 41:1027–1041CrossRefGoogle Scholar
  18. Young HP (1974) An axiomatization of Borda’s rule. J Econ Theory 9:43–52CrossRefGoogle Scholar
  19. Young HP (1975) Social choice scoring functions. SIAM J Appl Math 28:824–838CrossRefGoogle Scholar
  20. Young HP, Levenglick A (1978) A consistent extension of Condorcet’s election principle. SIAM J Appl Math 35:285–300CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of EconomicsKeio UniversityTokyoJapan

Personalised recommendations