Skip to main content

Effectiveness of a multidevice 3D virtual environment application to train car service maintenance procedures

Abstract

This paper reports a study which demonstrates the advantages of using virtual-reality-based systems for training automotive assembly tasks. Sixty participants were randomly assigned to one of the following three training experiences to learn a car service procedure: (1) observational training through video instruction; (2) an experiential virtual training and trial in a CAVE; and (3) an experiential virtual training and trial through a portable 3D interactive table. Results show that virtual trained participants, after the training, can remember significantly better (p < .05) the correct execution of the steps compared to video-trained trainees. No significant differences were identified between the experiential groups neither in terms of post-training performances nor in terms of proficiency, despite differences in the interaction devices. The relevance of the outcomes for the automotive fields and for the designers of virtual training applications are discussed in light of the outcomes, particularly that virtual training experienced through a portable device such as the interactive table can be effective, as can training performed in a CAVE. This suggests the possibility for automotive industries to invest in advanced portable hardware to deliver effectively long-distance programs of training for car service operators placed all over the world.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Ahlberg G et al (2007) Proficiency-based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies. Am J Surg 193:797–804. doi:10.1016/j.amjsurg.2006.06.050

    Article  Google Scholar 

  • Ai-Lim Lee E, Wong KW, Fung CC (2010) How does desktop virtual reality enhance learning outcomes? A structural equation modeling approach. Comput Educ 55:1424–1442. doi:10.1016/j.compedu.2010.06.006

    Article  Google Scholar 

  • Alippi C, de Russis C, Piuri V (2003) A neural-network based control solution to air-fuel ratio control for automotive fuel-injection systems. IEEE Trans Sys Man Cybern Part C: Appl Rev 33:259–268. doi:10.1109/TSMCC.2003.814035

    Article  Google Scholar 

  • Anastassova M, Burkhardt J-M (2009) Automotive technicians’ training as a community-of-practice: implications for the design of an augmented reality teaching aid. Appl Ergon 40:713–721. doi:10.1016/j.apergo.2008.06.008

    Article  Google Scholar 

  • Anastassova M, Burkhardt J-M, Mégard C, Ehanno P (2005) Results from a user-centred critical incidents study for guiding future implementation of augmented reality in automotive maintenance. Int J Ind Ergon 35:67–77. doi:10.1016/j.ergon.2004.08.005

    Article  Google Scholar 

  • Anderson JR (1982) Acquisition of cognitive skill. Psychol Rev 89:369–406

    Article  Google Scholar 

  • Bandura A (1992) Observational learning. In: Squire L (ed) Encyclopedia of learning and memory. Macmillan, New York, USA

    Google Scholar 

  • Belardinelli C, Blümel E, Müller G, Schenk M (2008) Making the virtual more real: research at the Fraunhofer IFF Virtual Development and Training Centre. Cogn Process 9:217–224. doi:10.1007/s10339-008-0216-0

    Article  Google Scholar 

  • Borsci S, Federici S, Lauriola M (2009) On the dimensionality of the System Usability Scale: a test of alternative measurement models. Cogn Process 10:193–197

    Article  Google Scholar 

  • Borsci S, Federici S, Bacci S, Gnaldi M, Bartolucci F (2015a) Assessing user satisfaction in the era of user experience: comparison of the SUS, UMUX, and UMUX-LITE as a function of product experience. Int J Hum Comput Interact 31:484–495. doi:10.1080/10447318.2015.1064648

    Article  Google Scholar 

  • Borsci S, Lawson G, Broome S (2015b) Empirical evidence, evaluation criteria and challenges for the effectiveness of virtual and mixed reality tools for training operators of car service maintenance. Comput Ind 67:17–26. doi:10.1016/j.compind.2014.12.002

    Article  Google Scholar 

  • Borsci S, Lawson G, Burgess M, Jha B (2015c) Early prototype assessment of a new virtual system for training procedural skills of automotive service operators: LARTE tool. In: Kurosu M (ed) Human–computer interaction: users and contexts. Lecture notes in computer science, vol 9171. Springer, Berlin, pp 135–143. doi:10.1007/978-3-319-21006-3_14

    Chapter  Google Scholar 

  • Bowman DA, Gabbard JL, Hix D (2002) A survey of usability evaluation in virtual environments: classification and comparison of methods. Presence Teleoper Virtual Environ 11:404–424. doi:10.1162/105474602760204309

    Article  Google Scholar 

  • Brooke J (1996) SUS: A “quick and dirty” usability scale. In: Jordan PW, Thomas B, Weerdmeester BA, McClelland IL (eds) Usability evaluation in industry. Taylor & Francis, London, pp 189–194

    Google Scholar 

  • Bruner J (1966) Toward a theory of instruction. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Cabral MC, Morimoto CH, Zuffo MK (2005) On the usability of gesture interfaces in virtual reality environments. Paper presented at the proceedings of the 2005 Latin American conference on human–computer interaction, Cuernavaca, Mexico

  • Corvaglia D (2004) Virtual training for manufacturing and maintenance based on Web3D Technologies. In: 1st international workshop on Web3D technologies in learning, education and training, Udine, Italy, 2004. pp 28–33

  • Dombrowski U, Engel C, Schulze S (2011) Changes and challenges in the after sales service due to the electric mobility. In: 2011 IEEE international conference on service operations, logistics, and informatics (SOLI), 10–12 July 2011. pp 77–82. doi:10.1109/soli.2011.5986532

  • Eugenia Υ, Nikolaos Ν, Despina P, Christos T (2015) Virtual reality simulators and training in laparoscopic surgery. Int J Surg. doi:10.1016/j.ijsu.2014.11.014

    Google Scholar 

  • Fast K, Gifford T, Yancey R (2004) Virtual training for welding. In: Mixed and augmented reality, 2004. ISMAR 2004. In: Third IEEE and ACM International Symposium on, 2–5 Nov. 2004. pp 298–299. doi:10.1109/ISMAR.2004.65

  • Flavián C, Guinalíu M, Gurrea R (2006) The role played by perceived usability, satisfaction and consumer trust on website loyalty. Inf Manag 43:1–14. doi:10.1016/j.im.2005.01.002

    Article  Google Scholar 

  • Gaiardelli P, Resta B, Martinez V, Pinto R, Albores P (2014) A classification model for product-service offerings. J Clean Prod 66:507–519. doi:10.1016/j.jclepro.2013.11.032

    Article  Google Scholar 

  • Garg AX, Norman GR, Eva KW, Spero L, Sharan S (2002) Is there any real virtue of virtual reality?: the minor role of multiple orientations in learning anatomy from computers. Acad Med 77:S97–S99

    Article  Google Scholar 

  • Gomes de Sá A, Zachmann G (1999) Virtual reality as a tool for verification of assembly and maintenance processes. Comput Gr 23:389–403. doi:10.1016/S0097-8493(99)00047-3

    Article  Google Scholar 

  • Haque S, Srinivasan S (2006) A meta-analysis of the training effectiveness of virtual reality surgical simulators. IEEE Trans Inf Technol Biomed 10:51–58. doi:10.1109/titb.2005.855529

    Article  Google Scholar 

  • Hart SG, Staveland LE (1988) Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. In: Peter AH, Najmedin M (eds) Advances in psychology, vol 52. North-Holland, Amsterdam, pp 139–183. doi:10.1016/S0166-4115(08)62386-9

    Google Scholar 

  • ISO (1998) ISO 9241-11: 1998 Ergonomic requirements for office work with visual display terminals (VDTs)—Part 11: Guidance on usability. CEN, Brussels

    Google Scholar 

  • Kolb DA (1984) Experiential learning as the science of learning and development. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Kolb AY, Kolb DA (2005a) The Kolb learning Style inventory—version 3.1 2005 technical specifications. Hay Group Holdings Inc, Boston

    Google Scholar 

  • Kolb AY, Kolb DA (2005b) Learning styles and learning spaces: enhancing experiential learning in higher education. Acad Manag Learn Educ 4:193–212. doi:10.5465/amle.2005.17268566

    Article  Google Scholar 

  • Kothari SN, Kaplan BJ, DeMaria EJ, Broderick TJ, Merrell RC (2002) Training in laparoscopic suturing skills using a new computer-based virtual reality simulator (MIST-VR) provides results comparable to those with an established pelvic trainer system. J Laparoendosc Adv Surg Tech 12:167–173. doi:10.1089/10926420260188056

    Article  Google Scholar 

  • Malmsköld L, Örtengren R, Svensson L (2014) Improved quality output through computer-based training: an automotive assembly field study. Hum Factors Ergon Manuf Serv Ind. doi:10.1002/hfm.20540

    Google Scholar 

  • Mantovani F (2003) VR learning: potential and challenges for the use of 3D environments in education and training. In: Riva G, Galimberti C (eds) Towards cyberpsychology: mind, cognitions and society in the internet age. IOS Press, Amsterdam, pp 207–226

    Google Scholar 

  • Mantovani F, Castelnuovo G, Gaggioli A, Riva G (2003) Virtual reality training for health-care professionals. CyberPsychol Behav 6:389. doi:10.1089/109493103322278772

    Article  Google Scholar 

  • Mavrikios D, Karabatsou V, Fragos D, Chryssolouris G (2006) A prototype virtual reality-based demonstrator for immersive and interactive simulation of welding processes. Int J Comput Integr Manuf 19:294–300. doi:10.1080/09511920500340916

    Article  Google Scholar 

  • Mcknight DH, Carter M, Thatcher JB, Clay PF (2011) Trust in a specific technology: an investigation of its components and measures. ACM Trans Manag Inf Syst 2:1–25. doi:10.1145/1985347.1985353

    Article  Google Scholar 

  • Mikropoulos T, Chalkidis A, Katsikis A, Kossivaki P (1997) Virtual realities in environmental education: the project LAKE. Educ Inf Technol 2:131–142. doi:10.1023/a:1018648810609

    Article  Google Scholar 

  • Milgram P, Kishino F (1994) A taxonomy of mixed reality visual displays. IEICE Trans Inf Syst E77-D:1321–1329

    Google Scholar 

  • Mujber TS, Szecsi T, Hashmi MSJ (2004) Virtual reality applications in manufacturing process simulation. J Mater Process Technol 155–156:1834–1838. doi:10.1016/j.jmatprotec.2004.04.401

    Article  Google Scholar 

  • Noor AK, Aras R (2015) Potential of multimodal and multiuser interaction with virtual holography. Adv Eng Softw 81:1–6. doi:10.1016/j.advengsoft.2014.10.004

    Article  Google Scholar 

  • Ottosson S (2002) Virtual reality in the product development process. J Eng Des 13:159–172. doi:10.1080/09544820210129823

    Article  Google Scholar 

  • Parry G, Newnes L, Huang X (2011) Goods, products and services. In: Macintyre M, Parry G, Angelis J (eds) Service design and delivery. Service science: research and innovations in the service economy. Springer, New York, pp 19–29. doi:10.1007/978-1-4419-8321-3_2

    Chapter  Google Scholar 

  • Parsons TD, Larson P, Kratz K, Thiebaux M, Bluestein B, Buckwalter JG, Rizzo AA (2004) Sex differences in mental rotation and spatial rotation in a virtual environment. Neuropsychologia 42:555–562. doi:10.1016/j.neuropsychologia.2003.08.014

    Article  Google Scholar 

  • Peters M, Laeng B, Latham K, Jackson M, Zaiyouna R, Richardson C (1995) A redrawn Vandenberg and Kuse mental rotations test—different versions and factors that affect performance. Brain Cogn 28:39–58. doi:10.1006/brcg.1995.1032

    Article  Google Scholar 

  • Renkl A (2014) Toward an instructionally oriented theory of example-based learning. Cogn Sci 38:1–37. doi:10.1111/cogs.12086

    Article  Google Scholar 

  • Salanitri D, Hare C, Borsci S, Lawson G, Sharples S, Waterfield B (2015) Relationship between trust and usability in virtual environments: an ongoing study. In: Kurosu M (ed) Human–computer interaction: design and evaluation. Lecture notes in computer science, vol 9169. Springer, Berlin, pp 49–59. doi:10.1007/978-3-319-20901-2_5

    Chapter  Google Scholar 

  • Salzman MC, Dede C, Loftin RB, Chen J (1999) A model for understanding how virtual reality aids complex conceptual learning. Presence Teleoper Virtual Environ 8:293–316. doi:10.1162/105474699566242

    Article  Google Scholar 

  • Sauro J, Lewis JR (2012) Quantifying the user experience: practical statistics for user research. Morgan Kaufmann, Burlington

    Google Scholar 

  • Selvander M, Åsman P (2012) Virtual reality cataract surgery training: learning curves and concurrent validity. Acta Ophthalmol 90:412–417. doi:10.1111/j.1755-3768.2010.02028.x

    Article  Google Scholar 

  • Seymour NE, Gallagher AG, Roman SA, O’Brien MK, Bansal VK, Andersen DK, Satava RM (2002) Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg 236:458–464

    Article  Google Scholar 

  • Sharples S, Cobb S, Moody A, Wilson JR (2008) Virtual reality induced symptoms and effects (VRISE): comparison of head mounted display (HMD), desktop and projection display systems. Displays 29:58–69. doi:10.1016/j.displa.2007.09.005

    Article  Google Scholar 

  • Sherman V, Feldman LS, Stanbridge D, Kazmi R, Fried GM (2005) Assessing the learning curve for the acquisition of laparoscopic skills on a virtual reality simulator. Surg Endosc 19:678–682. doi:10.1007/s00464-004-8943-5

    Article  Google Scholar 

  • Stork A, Sevilmis N, Weber D, Gorecky D, Stahl C, Loskyll M, Michel F (2012) Enabling virtual assembly training in and beyond the automotive industry. In: 2012 18th international conference on virtual systems and multimedia (VSMM), 2–5 Sept 2012. pp 347–352. doi:10.1109/VSMM.2012.6365944

  • Tang A, Owen C, Biocca F, Mou W (2003) Comparative effectiveness of augmented reality in object assembly. Paper presented at the proceedings of the SIGCHI conference on human factors in computing systems, Ft. Lauderdale, Florida, USA

  • Valdez MT, Ferreira CM, Maciel Barbosa FP (2013) Distance education using a desktop virtual reality (VR) system. In: 2013 proceedings of the 24th EAEEIE annual conference (EAEEIE), 30–31 May 2013. pp 145–150. doi:10.1109/EAEEIE.2013.6576518

  • Watterson JD, Beiko DT, Kuan JK, Denstedt JD (2002) A randomized prospective blinded study validating acquisition of ureteroscopy skills using a computer based virtual reality endourological simulator. J Urol 168:1928–1932. doi:10.1016/S0022-5347(05)64265-6

    Article  Google Scholar 

  • Webel S, Bockholt U, Engelke T, Gavish N, Olbrich M, Preusche C (2013) An augmented reality training platform for assembly and maintenance skills. Robot Auton Syst 61:398–403. doi:10.1016/j.robot.2012.09.013

    Article  Google Scholar 

  • Yuviler-Gavish N, Gutierrez T, Webel S, Rodriguez J, Tecchia F (2011a) Design guidelines for the development of virtual reality and augmented reality training systems for maintenance and assembly tasks. BIO Web Conf 1:29-21–29-24. doi:10.1051/bioconf/20110100029

    Google Scholar 

  • Yuviler-Gavish N, Yechiam E, Kallai A (2011b) Learning in multimodal training: visual guidance can be both appealing and disadvantageous in spatial tasks. Int J Hum Comput Stud 69:113–122. doi:10.1016/j.ijhcs.2010.11.005

    Article  Google Scholar 

  • Yuviler-Gavish N, Gutiérrez T, Webel S, Rodríguez J, Peveri M, Bockholt U, Tecchia F (2013) Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interact Learn Environ. doi:10.1080/10494820.2013.815221

    Google Scholar 

Download references

Acknowledgments

This paper was completed as part of Live Augmented Reality Training Environments (LARTE)—101509 Project. The authors would like to acknowledge the Technology Strategy Board for funding the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Borsci.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Borsci, S., Lawson, G., Jha, B. et al. Effectiveness of a multidevice 3D virtual environment application to train car service maintenance procedures. Virtual Reality 20, 41–55 (2016). https://doi.org/10.1007/s10055-015-0281-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10055-015-0281-5

Keywords

  • Automotive
  • Effectiveness of training
  • Virtual reality
  • Usability
  • Turst