Advertisement

Virtual Reality

, Volume 20, Issue 1, pp 17–26 | Cite as

Activities of daily living assessment in spinal cord injury using the virtual reality system Toyra®: functional and kinematic correlations

  • I. Dimbwadyo-TerrerEmail author
  • F. Trincado-Alonso
  • A. De los Reyes-Guzmán
  • P. López-Monteagudo
  • B. Polonio-López
  • A. Gil-Agudo
Original Article

Abstract

The main objective of this study was to analyze the correlations between functional scales and kinematic data collected during the execution of upper limb (UL) basic activities of daily living in an immersive virtual reality (VR) environment. Fifteen people with tetraplegia participated in the study. Moreover, we also want to confirm if changes in UL functional performance detected by functional scales are also detected by the VR system Toyra®. Patients were assessed before and after 4 weeks of daily conventional rehabilitation treatment complemented with a training with the VR system. Significant positive correlations between kinematic and functional parameters were found in the post assessment, verifying that changes in UL functional performance detected by functional scales are also measured by the VR system Toyra®, concretely the related to shoulder movements. Additionally, a predefined Agility metric has been applied, showing inversely proportional results to the level of injury, as we expected. The self-care category of the Spinal Cord Independence Measure (SCIM III) and the ranges of motion (ROM) captured with the VR system were analyzed, showing statistical significance changes between pre-post evaluations, supporting the hypothesis that kinematic analysis complements clinical and functional assessments of patients with tetraplegia.

Keywords

Assessment Activities of daily living Correlations Kinematic Tetraplegia Virtual reality 

References

  1. Alt Murphy M, Sunnerhagen K, Johnels B, Willén C (2006) Three-dimensional kinematic motion analysis of a daily activity drinking from a glass: a pilot study. J Neuroeng Rehabil 3:18CrossRefGoogle Scholar
  2. Burdea G (2003) Virtual rehabilitation-benefits and challenges*. Methods Inf Med 42(5):519–523Google Scholar
  3. Burke JW, McNeill MDJ, Charles DK, Morrow PJ, Crosbie J, McDonough SM (2009) Optimising engagement for stroke rehabilitation using serious games. Vis Comput 25(12):1085–1099CrossRefGoogle Scholar
  4. Cacho E, de Oliveira R, Ortolan R, Varoto R, Cliquet A (2011) Upper limb assessment in tetraplegia: clinical, functional and kinematic correlations. Int J Rehabil Res 34(1):65–72CrossRefGoogle Scholar
  5. Cameirao M, Bermúdez-I Badia S, Duarte-Oller E, Verschure P (2011) Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restor Neurol Neurosci 29(5):287–298Google Scholar
  6. Catz A, Itzkovich M, Agranov E, Ring H, Tamir A (1997) SCIM-spinal cord independence measure: a new disability scale for patients with spinal cord lesions. Spinal Cord 35(12):850–856CrossRefGoogle Scholar
  7. Catz A, Itzkovich M, Agranov E, Ring H, Tamir A (2001) The spinal cord independence measure (SCIM): sensitivity to functional changes in subgroups of spinal cord lesion patients. Spinal Cord 39(2):97–100CrossRefGoogle Scholar
  8. Chang J, Wu T, Wu W, Su F (2005) Kinematical measure for spastic reaching in children with cerebral palsy. Clin Biomech 20(4):381–388CrossRefGoogle Scholar
  9. De los Reyes-Guzmán A, Gil-Agudo A, Peñasco Martín B, Solís-Mozos M, Del Ama-Espinosa A, Pérez-Rizo E (2010) Kinematic analysis of the daily activity of drinking from a glass in a population with cervical spinal cord injury. J Neuroeng Rehabil 7:41CrossRefGoogle Scholar
  10. De Los Reyes-Guzmán A, Pérez-Nombela S, Dimbwadyo-Terrer I, Torricelli D, Gil-Agudo A (2013) Functional upper limb evaluation of activities of daily living in people with neurological disorders. In: Giroux JB, Vallee C (eds) Activities of daily living performance, impact life quality and assistance. Nova Science, New York, pp 55–76Google Scholar
  11. Dimbwadyo-Terrer I, Trincado-Alonso F, De la Peña-González A, Bernal-Sahún A, López-Monteagudo P, Polonio-López B, Gil-Agudo A (2013) Clinical, functional and kinematic correlations using the virtual reality system Toyra® as upper limb rehabilitation tool in people with spinal cord injury. In: Londral AR, Encarnação P, Pons JL (eds) International congress on neurotechnology, electronics informatics, Vilamoura, Algarve, Portugal, pp 81–88Google Scholar
  12. Gil-Agudo A, De la Peña-González A, Dimbwadyo-Terrer I, Peñasco Martín B, Bernal-Sahún A, López-Monteagudo P, Del Ama-Espinosa A, Pons J (2013) A novel motion tracking system for evaluation of functional rehabilitation of the upper limbs. Neural Regen Res 8(19):1773–1782Google Scholar
  13. Gil-Agudo A, Del Ama-Espinosa A, De la Peña-González A, Bernal-Sahún A, Rocón E (2011) Applications of Upper Limb Biomechanical Models in Spinal Cord Injury Patients. In: Klika V (ed) Biomechanics in applications, InTech, pp 127–164Google Scholar
  14. Gil-Agudo A, Dimbwadyo-Terrer I, Peñasco Martín B, de los Reyes-Guzmán A, Bernal-Sahún A, Berbel-García A (2012) Experiencia clínica de la aplicación del sistema de realidad TOyRA en la neuro-rehabilitación de pacientes con lesión medular. Rehabilitación 46(1):41–48CrossRefGoogle Scholar
  15. Harvey L, Batty J, Jones R, Crosbie J (2001) Hand function of C6 and C7 tetraplegics 1–16 years following injury. Spinal Cord 39(1):37–43CrossRefGoogle Scholar
  16. Hazard-Munro B (2014) Statistical methods for health care research, 5th edn. Lippincott, PhiladelphiaGoogle Scholar
  17. Itzkovich M, Gelernter I, Biering-Sorensen F, Weeks C, Laramee M, Craven B, Tonack M, Hitzig S, Glaser E, Zeilig G, Aito S, Scivoletto G, Mecci M, Chadwick R, El Masry W, Osman A, Glass C, Silva P, Soni B, Gardner B, Savic G, Bergström E, Bluvshtein V, Ronen J, Catz A (2007) The Spinal Cord Independence Measure (SCIM) version III: reliability and validity in a multi-center international study. Disabil Rehabil 29(24):1926–1933CrossRefGoogle Scholar
  18. Lang C, Macdonald J, Reisman D, Boyd L, Jacobson Kimberley T, Schindler-Ivens S, Hornby T, Ross S, Scheets P (2009) Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil 90(10):1692–1698CrossRefGoogle Scholar
  19. Lee D, Helal S, Anton S, De Deugd S, Smith A (2012) Participatory and persuasive telehealth. Gerontology 58(3):269–281Google Scholar
  20. Lee J, Ku J, Cho W, Hahn W, Kim I, Lee S, Kang Y, Kim D, Yu T, Wiederhold B, Wiederhold M, Kim S (2003) A virtual reality system for the assessment and rehabilitation of the activities of daily living. Cyberpsychol Behav 6(4):383–388CrossRefGoogle Scholar
  21. Rudhe C, van Hedel H (2009) Upper extremity function in persons with tetraplegia: relationships between strength, capacity, and the spinal cord independence measure. Neurorehabil Neural Repair 23(5):413–421CrossRefGoogle Scholar
  22. Safaee-Rad R, Shwedyk E, Quanbury A, Cooper J (1990) Normal functional range of motion of upper limb joints during performance of three feeding activities. Arch Phys Med Rehabil 71(7):505–509Google Scholar
  23. Spooren A, Janssen-Potten Y, Snoek G, Ijzerman M, Kerckhofs E, Seelen H (2008) Rehabilitation outcome of upper extremity skilled performance in persons with cervical spinal cord injuries. J Rehabil Med 40(8):637–644CrossRefGoogle Scholar
  24. Trincado-Alonso F, Dimbwadyo-Terrer I, De Los Reyes-Guzmán A, López-Monteagudo P, Bernal-Sahún A, Gil-Agudo A (2014) Kinematic metrics based on the virtual reality system toyra as an assessment of the upper limb rehabilitation in people with spinal cord injury. Biomed Res Int 2014:1–11CrossRefGoogle Scholar
  25. Tsao C, Mirbagheri M (2007) Upper limb impairments associated with spasticity in neurological disorders. J Neuroeng Rehabil 4:45CrossRefGoogle Scholar
  26. van Tuijl J, Janssen-Potten Y, Seelen H (2002) Clinical review evaluation of upper extremity motor function tests in tetraplegics. Spinal Cord 40:51–64CrossRefGoogle Scholar
  27. Weiss P, Kizony R, Feintuch U, Katz N (2006) Virtual reality in neurorehabilitation. In: Selzer M, Clarke S, Cohen L, Duncan P, Gage F (eds) Textbook neural repair rehabilitation, vol 51. Cambridge University Press, Cambridge, pp 182–197CrossRefGoogle Scholar
  28. Weiss P, Rand D, Katz N, Kizony R (2004) Video capture virtual reality as a flexible and effective rehabilitation tool. J Neuroeng Rehabil 1(1):12CrossRefGoogle Scholar
  29. Zariffa J, Kapadia N, Kramer J, Taylor P, Alizadeh-Meghrazi M, Zivanovic V, Albisser U, Willms R, Townson A, Curt A, Popovic M, Steeves J (2012) Relationship between clinical assessments of function and measurements from an upper-limb robotic rehabilitation device in cervical spinal cord injury. IEEE Trans Neural Syst Rehabil Eng 20(3):341–350CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • I. Dimbwadyo-Terrer
    • 1
    • 2
    Email author
  • F. Trincado-Alonso
    • 1
  • A. De los Reyes-Guzmán
    • 1
  • P. López-Monteagudo
    • 3
  • B. Polonio-López
    • 4
  • A. Gil-Agudo
    • 1
  1. 1.Biomechanics and Technical Aids Department National Hospital for Spinal Cord InjuryToledoSpain
  2. 2.Occupational Thinks Research Group. Centro Superior de Estudios Universitarios La Salle (UAM)MadridSpain
  3. 3.Indra SystemsMadridSpain
  4. 4.University of Castilla la ManchaTalavera de la ReinaSpain

Personalised recommendations