Advertisement

Virtual Reality

, Volume 10, Issue 3–4, pp 207–225 | Cite as

Multi-modal virtual environments for education with haptic and olfactory feedback

  • E. Richard
  • A. Tijou
  • P. Richard
  • J.-L. Ferrier
Original Article

Abstract

It has been suggested that immersive virtual reality (VR) technology allows knowledge-building experiences and in this way provides an alternative educational process. Important key features of constructivist educational computer-based environments for science teaching and learning, include interaction, size, transduction and reification. Indeed, multi-sensory VR technology suits very well the needs of sciences that require a higher level of visualization and interaction. Haptics that refers to physical interactions with virtual environments (VEs) may be coupled with other sensory modalities such as vision and audition but are hardly ever associated with other feedback channels, such as olfactory feedback. A survey of theory and existing VEs including haptic or olfactory feedback, especially in the field of education is provided. Our multi-modal human-scale VE VIREPSE (virtual reality platform for simulation and experimentation) that provides haptic interaction using a string-based interface called SPIDAR (space interface device for artificial reality), olfactory and auditory feedbacks is described. An application that allows students experiencing the abstract concept of the Bohr atomic model and the quantization of the energy levels has been developed. Different configurations that support interaction, size and reification through the use of immersive and multi-modal (visual, haptic, auditory and olfactory) feedback are proposed for further evaluation. Haptic interaction is achieved using different techniques ranging from desktop pseudo-haptic feedback to human-scale haptic interaction. Olfactory information is provided using different fan-based olfactory displays (ODs). Significance of developing such multi-modal VEs for education is discussed.

Keywords

Virtual Environment Haptic interaction Olfaction Multi-modal feedback Human scale Education 

Notes

Acknowledgments

We wish to acknowledge the assistance of the student Pierre Guérin, who has developed the “Haptic Atomic” user interface.

References

  1. Akkiraju N, Edelsbrunner H, Ping. F, Qian J (1996) Viewing geometric protein structures from inside a CAVE™. IEEE Comput Graph Appl 16(4):58–61CrossRefGoogle Scholar
  2. Ammi M, Ferreira A (2004) Virtualized reality interfaces for micro and nanomanipulation. Proc. IEEE Int. Conf. on robotics and automation (ICRA’04) New Orleans, LAGoogle Scholar
  3. Annett J (1996) Olfactory memory: a case study in cognitive psychology. J. Psychol 130(3):309–319Google Scholar
  4. Arai F, Ando D, Fukuda T, Nonoda Y, Oota T (1995) Micro manipulation based on micro physics, strategy based on attractive force reduction and stress measurement. Proc. IEEE Int. Conf. on robotics and automation (ICRA’95); 236–241Google Scholar
  5. Bach-y-Rita P, Webster J, Thompkins W, Crabb T (1987) Sensory substitution for space gloves and for space robots. Workshop on Space Telerobotics 2:51–57Google Scholar
  6. Barfield W, Danas E (1996) Comments on the use of olfactory displays for virtual environments. Presence: Teleoperators and Virtual Environments 5(1):109–121Google Scholar
  7. Baron R (1990) Environmentally induced positive effects: its impact on self-efficacy, task performance, negotiation and conflict. J Appl Soc Psychol 20:368–384CrossRefGoogle Scholar
  8. Basdogan C, Ho C-H, Srinivasan M, Slater M (2000) An experimental study on the role of touch in shared virtual environments. ACM Trans Comput-Hum Interact (TOCHI) 7(4):443–460CrossRefGoogle Scholar
  9. Biggs S, Srinivasan M (2002) Haptic Interfaces, In: Stanney K. M. (Ed) Handbook of the virtual environments: design, implementation and applications. Lawrence Erlbaum Associates, London 5; 93–116Google Scholar
  10. Birmanns S, Wriggers W (2003) Interactive fitting augmented by force feedback and virtual reality. J Struct Biol 144:123–131CrossRefGoogle Scholar
  11. Bouzit M, Popescu V, Burdea G, Boian R (2002) The Rutgers Master II-ND Force Feedback Glove. Proc. IEEE virtual reality conf. 2002 (VRC’02) Haptics symposium, Orlando FL, MarchGoogle Scholar
  12. Brady R, Pixton J, Baxter G, Moran P, Potter C, Carragher B, Belmont A (1995) Crumbs: a virtual environment tracking tool for biological imaging. Proc. IEEE Symp. on Frontiers in biomedical visualization, IEEE Computer Society Press, Los Alamitos, USA; 18–25Google Scholar
  13. Brooks Jr F, Ming O-Y, Batter J, Kilpatrick P (1990) Project GROPE: haptic displays for scientific visualization. Computer Graphics (ACM) 24(4):177–185Google Scholar
  14. Bryson S (1996) Virtual reality in scientific visualization, communications of the ACM 39(5):62–71Google Scholar
  15. Burdea G (1996) Force and touch feedback for virtual reality. Wiley, New YorkGoogle Scholar
  16. Burdea G, Zhuang J, Roskos E, Silver D, Langrana N (1992) A portable dextrous master with force feedback. Presence Teleoperators and Virtual Environments 1:18–28Google Scholar
  17. Burdea G, Coiffet P, Richard P (1996) Integration of multi-modal I/Os for virtual environments. Int. J. of Human-Computer Interaction (IJHCI), Special Issue on Human-Virtual Environment Interaction 1:5–24Google Scholar
  18. Burdea G, Patounakis G, Popescu V, Weiss RE (1999) Virtual reality-based training for the diagnosis of prostate cancer, IEEE Trans Biomed Eng 46(10):1253–60CrossRefGoogle Scholar
  19. Burdea G, Coiffet P (1994) Virtual reality technology. Wiley New YorkGoogle Scholar
  20. Burdea G, Coiffet P (2003) Virtual reality technology, 2nd Ed., Wiley, Hoboken, New Jersey, 444 pGoogle Scholar
  21. Byrne C (1996) Water on tap-the use of virtual reality as an educational tool, Ph. D. thesis, University of WashingtonGoogle Scholar
  22. Cai Y, Wang S, Sato M (1997) A human-scale direct motion instruction system device for education systems. The IEICE Transactions, E80-D 2:212–217Google Scholar
  23. Castelino K (2002) Biological object nanomanipulation. Review report, University of California, BerkeleyGoogle Scholar
  24. Cater J (1994) Approximating the senses. Smell/taste: odors in virtual reality. Proc. IEEE Int. conf. systems, man and cybernetics, San Antonio 2; 1781Google Scholar
  25. ChangHoon P, Heedong K, Ig-Jae K, Sang Chul A, Yong-Moo K, Hyoung-Gon K (2002) The making of Kyongju VR theatre. Proc. IEEE virtual reality conf. 2002 (VRC’02); 269–273Google Scholar
  26. Choi W, Jeong S-J, Hashimoto N, Hasegawa S, Koike Y, Sato M (2004) A development and evaluation of reactive motion capture system with haptic feedback. Proc. of the FGR’04 37:851–856Google Scholar
  27. Cobb S, Neale H, Crosier J, Wilson J (2002) Development and evaluation of virtual environments for education, In: Stanney M (eds) Handbook of virtual environments: design, implementation, and applications, Lawrence Erlbaum Associates, London 46; 911–936Google Scholar
  28. Crison F, Lecuyer A, Mellet d’Huart D, Burkhardt J. –M, Michel G, Dautin J. –L. (2005) How to use milling machines with multi-sensory feedback in virtual reality. Proc. IEEE virtual reality conf. 2005 (VRC’05); 139–146Google Scholar
  29. Cruz-Neira C, Langley R, Bash P (1996) VIBE: a virtual biomolecular environment for interactive molecular modeling. Comput Chem 20(4):469–477CrossRefGoogle Scholar
  30. Danthiir V, Roberts R, Pallier G, Stankov L (2001) What the nose knows: olfaction and cognitive abilities. Intelligence 29(4):337–361CrossRefGoogle Scholar
  31. Dede C, Salzman M, Loftin B, Ash K (1997) Using virtual reality technology to convey abstract scientific concepts. In: Jacobson MJ, Kozma RB (Eds) Learning the sciences of the 21st Century: research, design, and implementing advanced technology learning environments. Lawrence Erlbaum Associates, Hillsdale, NewJerseyGoogle Scholar
  32. Dede C, Salzman M, Loftin R, Prague D (1999) Multisensory immersion as a modeling environment for learning complex scientific concepts. In: Feurzeig W, Roberts N (eds) Modeling and simulation inscience and mathematics education. Springer, Berlin Heidelberg New YorkGoogle Scholar
  33. Degel J, Köster E (1999) Odors: implicit memory and performance effects. Chem Senses 26:267–280CrossRefGoogle Scholar
  34. Dinh H, Walker N, Hodges L, Chang S, Kobayashi A (1999) Evaluating the importance of multi-sensory input on memory and the sense of presence in virtual environments. Proc. IEEE virtual reality conf. 1999 (VRC’99) Houston, Texas; 222–228Google Scholar
  35. Duffy T, Jonassen D (1992) Constructivism; new implications for instructional technology. In: Duffy T, Jonassen D (eds) Constructivism and the technology of instruction. Lawrence Erlbaum Associates, New JerseyGoogle Scholar
  36. Emerson T, Revere D (1997) Virtual reality in training and education: resource guide to citations and online information, University of Washington, HITL, Seattle, WA, technical publication: B-94–1Google Scholar
  37. Engen T (1982) The perception of odors. Academic Press, New YorkGoogle Scholar
  38. Falvo M, Superfine R (2002) Mechanics and friction at the nanometer scale. J Nanoparticle Res 2:237–248CrossRefGoogle Scholar
  39. Ferreira A, Mavroidis C (2006) Virtual reality and haptics for nano robotics: a review study. IEEE robotics and automation magazine (in press) Google Scholar
  40. Fiolhais C, Trindade J (1999) Use of computers in physics education. In Ferrari A (ed.) Proc. Euroconference’98 -new technologies for higher education, AveiroGoogle Scholar
  41. Fjeld M, Voegtli M (2002) Augmented chemistry : an interactive educational workbench. ISMAR’02Google Scholar
  42. Fuchs P, Moreau G, Burkhardt JM-, Coquillart S (2006a) L’interfaçage, l’immersion et l’interaction en environnement virtuel, In: Le traité de la Réalité Virtuelle, Vol. 2, Presses de l’Ecole des Mines, Paris, 520 pGoogle Scholar
  43. Fuchs P, Moreau G, Arnaldi B, Guitton P (2006b) Les applications de la réalité virtuelle, In: Le traité de la Réalité Virtuelle, Vol. 4, Presses de l’Ecole des Mines, Paris, 520 pGoogle Scholar
  44. Fuchs P, Papin J. –P, Richard P, Tijou A (2006c) Les interfaces olfactives, In: Fuchs P, Moreau G (eds) Le Traité de Réalité Virtuelle, Vol. 2: L’interfaçage, l’immersion et l’interaction en environnement virtuel, Presse de l’Ecole des Mines 4 11Google Scholar
  45. Gallina P, Rossi A, Williams II R (2000) Planar cable-direct-driven robot. Part I & II. ASME design tech. Conf., PittsburghGoogle Scholar
  46. Garratt J, Clow D, Hodgson A, Tomlinson A (1999) Computer simulation and chemical education—a review of project elaborate. Chem Educ Rev; 51–73Google Scholar
  47. Gay E (1994) Is virtual reality a good teaching tool? Virtual Reality Special Report 1:51–60Google Scholar
  48. Gomez D, Burdea G, Langrana N (1995) Modeling of the Rutgers master II haptic display. Proc. 4th ann. symp. on haptic interfaces for virtual environments and teleoperator systems, ASME; 727–734Google Scholar
  49. Gutierrez-Osuna R (2004) Olfactory Interaction, In: Bainbridge W (ed) Encyclopedia of human-computer interaction. Berkshire Pub, pp. 507–511Google Scholar
  50. Harel D, Carmel L, Lancet D (2003) Towards an odor communication system. Comput Biol Chem 27:121–133MATHCrossRefGoogle Scholar
  51. Hashimoto M, Morioka S, Yamamoyo R. (1997) Force display for atomic bonds. Proc. IEEE int. conf. on robotics and automation (ICRA’97)Google Scholar
  52. Hashimoto N, Ryu J, Jeong S.-J, Sato M (2004) Human-scale interaction with a multi-projector display and multimodal interfaces. Proc. PCM’04 3:23–30Google Scholar
  53. Heilig M (1962) US Patent 3,050,870 Sensorama stimulator. August 28Google Scholar
  54. Herz R, Eich E (1995) Commentary and Envoi. In: Schab F, Crowder R (Eds) Memory for odors. Lawrence Erlbaum Associates, Mahwah, New Jersey, pp159–175Google Scholar
  55. Herz R, Engen T (1996) Odor memory: review and analysis. Psychon Bull Rev 3:300–313Google Scholar
  56. Herz R (1998) Are odors the best cues to memory? A cross-modal comparison of associative memory stimuli. Annals of the New York Academy of Sciences 855; 670–674Google Scholar
  57. Hinckley K, Pausch R, Goble J, Kassell N (1994) Passive real-world interface props for neurosurgical visualization. ACM CHI; 452–458Google Scholar
  58. Hirata Y, Sato M (1992) 3-dimensional interface device for virtual work space. Proc. 1992 IEEE/RSJ Int. Conf. on IROS 2:889–896Google Scholar
  59. Ihlenfeldt W (1997) Virtual Reality in Chemistry. J Mol Mod 3:386–402CrossRefGoogle Scholar
  60. Inglese F-X, Jeong S-J, Richard P, Sato M (2005) A multi-modal virtual environment. Proc. Int. Conf. Virtual Concept’05, Biarritz, France, 8–10 November 2005Google Scholar
  61. Ishii M, Sato M (1994) 3D spatial interface device using tensed strings. Presence: Teleoperators and Virtual Environments 3(1):81–86Google Scholar
  62. Jansson G, Petrie H, Colwell C, Kornbrot D, Fänger J, König H, Billberger K, Hardwick A, Furner S (1999) Haptic virtual environments for blind people: exploratory experiments with two devices. Int. J. Virtual Real 4 1Google Scholar
  63. Jones A, Scanlon E, Blake, C (1998) Reflections on a model for evaluating learning technologies, In: Oliver M. (ed) Innovation in the evaluation of learning technology. University of North London; 25–41Google Scholar
  64. Kalawsky R (1993) The science of virtual reality and virtual environments, Addison-Wesley, Pub. CoGoogle Scholar
  65. Karr T, Brady R (2000) Virtual biology in the CAVE. Trends Genet 16:231–232CrossRefGoogle Scholar
  66. Kaye J (2001) Symbolic olfactory display. Master’s Thesis, MIT Media LabGoogle Scholar
  67. Keller P, Kouzes R, Kangas L, Hashem S (1995) Transmission of olfactory information for telemedicine, In: Morgan K, Satava R, Sieburg H, Matteus R, Christensen J. (eds) Interactive technology and the new paradigm for healthcare. IOS Press and Ohmsha, Amsterdam, pp 168–172Google Scholar
  68. Kim S, Hasegawa Y, Koike M, Sato M (2002) Tension based 7 DOF force feedback device: SPIDAR-G. Proc. IEEE virtual reality conf. (VRC’02)Google Scholar
  69. Köster E (2002) The specific characteristics of the sense of smell, In: Rouby C, Schaal B, Dubois D, Gervay R, Holley A (eds) Olfaction, taste, and cognition. Cambridge Univ. Press 3, pp. 27–43Google Scholar
  70. Langrana N (1997) Human performance using virtual reality tumor palpation simulation. Comput Graph 21(4):451–458CrossRefGoogle Scholar
  71. Lécuyer A, Coquillart S, Kheddar A, Richard P, Coiffet P (2000) Pseudo-haptic feedback: can isometric input devices simulate force feedback ?, Proc. IEEE virtual reality conf. 2000 (VR’00), New Brunswick, New Jersey; 83–90Google Scholar
  72. Lécuyer A, Burkhardt J.-M, Etienne L (2004) Feeling bumps and holes without a haptic interface: the perception of pseudo-haptic textures. Proc. CHI 2004; 239–247Google Scholar
  73. Mikropoulos T, Chalkidis A, Katsikis A, Emvalotis A (1998) Student’s attitudes towards educational virtual environments. Educ Inf Technol 3:137–148CrossRefGoogle Scholar
  74. Mikropoulos T. A, Katsikis A, Nikolou E, Tsakalis P (2003) Virtual environments in biology teaching. J Biol Educ 37(4):176–181Google Scholar
  75. Mochizuki A, Amada T, Sawa S, Takeda T, Motoyashiki S, Kohyama K, Imura M, Chihara K (2004) An olfactory display device linked with human gesture. Proc. SCI’04, Kyoto, Japan 48(6004):531–532Google Scholar
  76. Morie J, Iyer K, Valanejad K, Sadek R, Miraglia D, Milam D, Williams J, Luigi D.-P, Leshin J (2003) Sensory design for virtual environments, SIGGRAPH 2003 Sketch, San Diego, CA, JulyGoogle Scholar
  77. Nikolou E, Mikropoulos T, Katsikis A (1997) Virtual realities in biology teaching, In: Bevan M (ed) Proc. Int. conference virtual reality in education and training. Loughborough, UK; 59–63Google Scholar
  78. Ouh-Young G, Pique M, Hughes J, Srinivasan N, Brooks Jr. F (1988) Using a manipulator for force display in molecular docking. Proc. IEEE robotics and automation conference, Philadelphia, PA; 1824–1829Google Scholar
  79. Ouh-Young M, Beard D, Brooks F (1989) Force display performs better than visual display in a simple 6-D docking task. Proc. IEEE Int. Conf. on robotics and automation (ICRA’89)Google Scholar
  80. Paljic A, Tarrin N, Coquillart S, Bouguila L, Sato M (2004) The passive stringed haptic spidar for the worlkbench. EuroGraphics’04, Grenoble, FranceGoogle Scholar
  81. Papin J.-P, Bouallagui M, Ouali A, Richard P, Tijou A, Poisson P, Bartoli W (2003) DIODE: Smell-diffusion in real and virtual environments. Proc. 5th Int. Conf. on virtual reality (VRIC’03). Laval, France, May; 113–117Google Scholar
  82. Richard P, Birebent G, Burdea G, Gomez D, Langrana N, Coiffet P (1996) Effect of frame rate and force feedback on virtual objects manipulation. Presence: Teleoperators and Virtual Environments 15:95–108Google Scholar
  83. Richard P, Allain P, Richard E, Le Gall D (2006a) Projet EVACOG–Environnements Virtuels Appliqués aux Sciences Cognitives. Handicap 2006, Proc. 4th Conf. "Nouvelles Technologies au service de l'homme", Handicap 2006, Paris, France, 7–9 June 2006, pp 233–239Google Scholar
  84. Richard P, Chamaret D, Inglese F-X, Lucidarme P, Ferrier J-L (2006b) Human-scale haptic virtual environment for product design: effect of sensory substitution. Int J Virtual Real (in press)Google Scholar
  85. Richard P, Coiffet P (1995) Human perceptual issues in virtual environments : sensory substitution and information redundancy. Proc. of the IEEE Int. work. on robot and human communication, Tokyo, JapanGoogle Scholar
  86. Riganelli A, Gervasi O, Laganà A, Alberti M (2003) A multi-scale virtual reality approach to chemical experiments. LNCS 2658:324–330Google Scholar
  87. Rizzo A (2005) Development of a virtual reality therapy application for Iraq war veterans with PTSD, virtual reality. Associated technologies and rehabilitation, Three-day symposium, University of Haifa, Israel, March 7–9Google Scholar
  88. Rizzo A, Jounghyun A (2005) SWOT analysis of the field of virtual reality rehabilitation and therapy. Presence: Teleoperators and Virtual Environments 14(2):119–146CrossRefGoogle Scholar
  89. Roussos M, Gillingham M (1998) evaluation of an immersive collaborative virtual learning environment for K-12 education, AERA Roundtable session at the American Educational Research Association annual meeting, San Diego, US, AprilGoogle Scholar
  90. Ruiz I, Espinosa E, Garcia G, Gómez-Nieto M (2002) Computer-assisted learning of chemical experiments through a 3D virtual laboratory. LNCS 2329:704–712MATHGoogle Scholar
  91. Salzman M, Dede C, Loftin R, Chen J (1999) a model for understanding how virtual reality aids complex conceptual learning. Presence: Teleoperators and Virtual Environments 8(3):293–316CrossRefGoogle Scholar
  92. Sankaranarayanan G, Weghorst S, Sanner M, Gillet A, Olson A (2003) Role of haptics in teaching structural molecular biology. Proc. 11th Symp. on Haptic interfaces for virtual environment and teleoperator systems. Los Angeles, CA; 365Google Scholar
  93. Sato M (2001) Evolution of SPIDAR. Proc. 3rd Int. virtual reality conf. (VRIC’01) Laval, May, FranceGoogle Scholar
  94. Sauer C, Hastings W, Okamura A (2004) Virtual environment for exploring atomic bonding. Proc. EuroHaptics’04, Munich, Germany 15:232–239Google Scholar
  95. Schiffman S, Pearce T (2002) Introduction to olfaction: perception, anatomy, physiology, and molecular biology. In: Pearce T, Schiffman S, Nagle H, Gardner JW (eds) Handbook of machine olfaction: Electronic Nose Technology. Wiley-VCHGoogle Scholar
  96. Shaffer D, Meglan D, Ferrell M, Dawson S (1999) Virtual rounds: simulation-based education in procedural medicine. Proc. 1999 SPIE Battlefield Biomedical Technologies Conf., Orlando, FL 3712:99–108Google Scholar
  97. Sharma G, Mavroidis C, Ferreira A (2005) Virtual reality and haptics in nano- and bionanotechnology, In: Rieth M, Schommers W (eds) Handbook of theoretical and computational nanotechnology 10 40; 1–33Google Scholar
  98. Srinivasan M (1995) Haptic Interfaces. In: Durlach NI, Mavor AS (Eds) Virtual reality: scientific and technical challenges. National Academic Press, Washington DC, pp 161–187Google Scholar
  99. Srinivasan M, Basadogan C (1997) Haptics in virtual environments: taxonomy, research status, and challenges. Comput Graph 21(4):393–404CrossRefGoogle Scholar
  100. Stanney KM (2002) Handbook of the virtual environments: design, implementation and applications. Lawrence Erlbaum Associates, LondonGoogle Scholar
  101. Stone R (2001) Haptic feedback: a brief history from telepresence to virtual reality. LNCS 2058:1–16MATHGoogle Scholar
  102. Stredney D, Wiet G, Yagel R, Sessanna D, Kurzion Y, Fontana M, Shareef N, Levin M, Martin K, Okamura A (1998) A comparative analysis of integrating visual representations with haptic displays, In: Westwood et al. (ed) Proc. MMVR6, IOS Press, Amsterdam; 20–26Google Scholar
  103. Sundgren H, Winquist F, Lundstrom I (1992) Artificial olfactory system based on field effect devices. Proc. interfaces to real and virtual worlds, Montpellier, France; 463–472Google Scholar
  104. Suzuki A, Kamiko M, Yamamoto R, Tateizumi Y, Hashimoto M (1999) Molecular simulations in the virtual material laboratory. Comput Mater Sci 14:227–231CrossRefGoogle Scholar
  105. Tarrin N, Coquillart S, Hasegawa S, Bouguila L, Sato M. (2003) The stringed haptic workbench: a new haptic workbench solution. EuroGraphics’03 22; 3Google Scholar
  106. Tijou A, Richard E, Richard P (2006a) Using olfactive virtual environments for learning organic molecules. proceedings series: LNCS, Vol. 3942, Pan, Z. et al, (eds), Technologies for e-learning and digital entertainment, first international conference, Edutainment 2006, Hangzhou, China; 1223–33Google Scholar
  107. Tijou A, Richard P, Papin J. –P (2006b) Diffusion d’odeurs dans les environnements virtuels: étude préliminaire, IEEE Conf. Int. Francophone d’Automatique (CIFA’06), 30 mai-01 juin, Bordeaux, FranceGoogle Scholar
  108. Trindade J, Fiolhais C, Gil V (1999) Virtual water, an application of virtual environments as an education tool for physics and chemistry. In: Cumming G et al. (eds.) Advanced research in computers and communication in education. Proc. 7th Int. conf. on computers in education, ICCE’99, Chiba, Japan, IOS Press 2; 655–658Google Scholar
  109. Trindade J, Paiva J, Fiolhais C (2001) Visualizing atoms and molecules in on-line simulations and virtual reality. Europhys News 32(11):14–15CrossRefGoogle Scholar
  110. Von Békésy G (1964) Olfactory analog to directional hearing. J Appl Physiol 19:369–373Google Scholar
  111. Walairacht S, Ishii M, Koike Y, Sato M (2001) Two-handed multi-fingers string-based haptic interface device. The IEICE Transactions, E84-D 3:365–373Google Scholar
  112. Warm J, Dember W, Parasuraman R (1990) Effects on fragrance on vigilance, performance and stress. Perfumer and Flavorist 15:15–18Google Scholar
  113. Washburn D, Jones L, Satya R, Bowers C, Cortes A (2003) Olfactory use in virtual environment training. Modeling and simulation magazine 2 3Google Scholar
  114. Washburn D, Jones L (2004) Could olfactory displays improve data visualization?. Computing in science and engineering, Nov-Dec; 80–83Google Scholar
  115. Williams II R, Chen M.-Y, Seaton J (2002) Haptics-augmented high school physics tutorials. Int J Virtual Real 5 1Google Scholar
  116. Williams II R, Srivastava M, Howell J, Conatser Jr, R, Eland D, Burns J, Chila A. (2004) The virtual haptic back for palpatory training. Proc. 6th Int. Conf. on multimodal interfaces, State College, PA, USA, OctoberGoogle Scholar
  117. Williams II R.L (1999) Planar cable-suspended haptic interface: design for Wrench Exertion. Proc. 1999 ASME design tech. conf., 25th design automation conf., Las VegasGoogle Scholar
  118. Wilson D, Stevenson R (2003) Olfactory perceptual learning: the critical role of memory in odor discrimination. Neurosci Biobehav Rev 27:307–328CrossRefGoogle Scholar
  119. Winn W (1993) A conceptual basis for educational applications of virtual reality, University of Washington, HITL, Seattle, WA, technical publication: R-93–9Google Scholar
  120. Winn W, Windschitl M (2001) Learning science in virtual environments: the interplay of theory and experience. Themes Educ 1(4):373–389Google Scholar
  121. Wu W, Basdogan C, Srinivasan M (1999) The effect of perspective on visual-haptic perception of object size and compliance in virtual environments. Proc. ASME Dynamic systems and control division; 67Google Scholar
  122. Yanagida, Y, Kawato S, Nom a H, Tomono A, Tetsutani N (2004) Projection-based olfactory display with nose tracking. Proc. IEEE virtual reality conf. (VRC’04) Chicago, March; 43–50Google Scholar
  123. Youngblut C, Johnson R, Nash S, Weinclaw R, Will C (1996) Review of virtual environment interface technology IDA paper P-3186 8:209–216Google Scholar
  124. Youngblut C (1998) Educational use of virtual reality technology. Tech. Report. Inst. Defense Analyses, USGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2006

Authors and Affiliations

  • E. Richard
    • 1
  • A. Tijou
    • 1
  • P. Richard
    • 1
  • J.-L. Ferrier
    • 1
  1. 1.Laboratoire d’Ingénierie des Systèmes AutomatisésUniversité d’Angers – EA 4014AngersFrance

Personalised recommendations