Skip to main content
Log in

Current conservation in the covariant quark-diquark model of the nucleon

  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The description of baryons as fully relativistic bound states of quark and glue reduces to an effective Bethe-Salpeter equation with quark-exchange interaction when irreducible 3-quark interactions are neglected and separable 2-quark (diquark) correlations are assumed. This covariant quark-diquark model of baryons is studied with the inclusion of the quark substructure of the diquark correlations. In order to maintain electromagnetic current conservation it is then necessary to go beyond the impulse approximation. A conserved current is obtained by including the coupling of the photon to the exchanged quark and direct “seagull” couplings to the diquark structure. Adopting a simple dynamical model of constituent quarks and exploring various parametrisations of scalar diquark correlations, the nucleon Bethe-Salpeter equation is solved and the proton and neutron electromagnetic form factors are calculated numerically. The resulting magnetic moments are still about 50% too small, the improvements necessary to remedy this are discussed. The results obtained in this framework provide an excellent description of the electric form factors (and charge radii) of the proton, up to a photon momentum transfer of 3.5 GeV2, and the neutron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ostrick et al., Phys. Rev. Lett. 83, 276 (1999).

    Article  ADS  Google Scholar 

  2. I. Passchier et al., Phys. Rev. Lett. 82, 4988 (1999); D.J. Boersma, for the 9405 Collaboration, e-print, nuclex/9908003.

    Article  ADS  Google Scholar 

  3. M. Gell-Mann, Phys. Rev. 8, 214 (1964).

    Google Scholar 

  4. G. Karl, E. Obryk, Nucl. Phys. B 8, 609 (1968).

    Article  ADS  Google Scholar 

  5. D. Faiman, A.W. Hendry, Phys. Rev. 173, 1720 (1968).

    Article  ADS  Google Scholar 

  6. R.P. Feynman, M. Kislinger, F. Ravndal, Phys. Rev. D 3, 2706 (1971).

    Article  ADS  Google Scholar 

  7. A. Chodos, R.L. Jaffe, K. Johnson, C. Thorn, V.F. Weisskopf, Phys. Rev. D 9, 3471 (1974); A. Chodos, R.L. Jaffe, K. Johnson, C. Thorn, Phys. Rev. D 10, 2599 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  8. P. Hasenfratz, J. Kuti, Phys. Rep. 40, 75 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  9. T.H.R. Skyrme, Proc. R. Soc. 127, 260 (1961).

    Google Scholar 

  10. G.S. Adkins, C.R. Nappi, E. Witten, Nucl. Phys. B 228, 552 (1983).

    Article  ADS  Google Scholar 

  11. B. Schwesinger, H. Weigel, G. Holzwarth, A. Hayashi, Phys. Rep. 173, 173 (1989).

    Article  ADS  Google Scholar 

  12. G. Holzwarth (Ed.), Baryons as Skyrme Solitons (World Scientific, Singapore, 1993).

    Google Scholar 

  13. R. Alkofer, H. Reinhardt, H. Weigel, Phys. Rep. 265, 139 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  14. C.V. Christov et al., Prog. Part. Nucl. Phys. 37, 1 (1996).

    Article  Google Scholar 

  15. H. Reinhard, Phys. Lett. B 244, 316 (1990).

    Article  ADS  Google Scholar 

  16. A. Buck, R. Alkofer, H. Reinhardt, Phys. Lett. B 286, 29 (1992).

    Article  ADS  Google Scholar 

  17. N. Ishii, W. Bentz, K. Yazaki, Phys. Lett. B 301, 165 (1993); Phys. Lett. B 318, 26 (1993); Nucl. Phys. A 587, 617 (1995).

    Article  ADS  Google Scholar 

  18. S. Huang, J. Tjon, Phys. Rev. C 49, 1702 (1994).

    Article  ADS  Google Scholar 

  19. A. Buck, H. Reinhardt, Phys. Lett. B 356, 168 (1995).

    Article  ADS  Google Scholar 

  20. H. Asami, N. Ishii, W. Bentz, K. Yazaki, Phys. Rev. C 51 3388, (1995).

    Article  ADS  Google Scholar 

  21. R.T. Cahill, Aust. J. Phys. 42, 171 (1989).

    ADS  Google Scholar 

  22. C.J. Burden, R.T. Cahill, J. Praschifka, Aust. J. Phys. 42, 147 (1989).

    ADS  Google Scholar 

  23. A. Chodos, C. Thorn, Phys. Rev. D 12, 2733 (1975).

    Article  ADS  Google Scholar 

  24. M. Rho, Phys. Rep. 240, 1 (1994).

    Article  ADS  Google Scholar 

  25. U. Zückert, R. Alkofer, H. Weigel, H. Reinhardt, Phys. Rev. C 55, 2030 (1997); see also, U. Zückert, Baryonen als Hybride: Chirale Solitonen und gebundene Dreiquarkzustände, Dissertation, Tübingen University, 1996.

    Article  ADS  Google Scholar 

  26. L. von Smekal, A. Hauck, R. Alkofer, Phys. Rev. Lett. 79, 3591 (1997).

    Article  ADS  Google Scholar 

  27. L. von Smekal, A. Hauck, R. Alkofer, Ann. Phys. 267, 1 (1998).

    Article  MATH  ADS  Google Scholar 

  28. J. Collinge, Variant Creutzfeldt-Jakob disease, The Lancet 354, 317 (1999).

    Article  Google Scholar 

  29. C.J. Burden, C.D. Roberts, M.J. Thomson, Phys. Lett. B 371, 163 (1996).

    Article  ADS  Google Scholar 

  30. C.D. Roberts, Nucl. Phys. A 605, 475 (1996).

    Article  ADS  Google Scholar 

  31. M.A. Pichowsky, T.-S.H. Lee, Phys. Rev. D 56, 1644 (1997).

    Article  ADS  Google Scholar 

  32. V.A. Miransky, Dynamical Symmetry Breaking in Quantum Field Theories (World Scientific, 1993) and references therein.

  33. C.D. Roberts, A.G. Williams, Prog. Part. Nucl. Phys. 33, 477 (1994).

    Article  ADS  Google Scholar 

  34. P.C. Tandy, Prog. Part. Nucl. Phys. 39, 117 (1997).

    Article  ADS  Google Scholar 

  35. K. Kusaka, G. Piller, A.W. Thomas, A.G. Williams, Phys. Rev. D 55, 5299 (1997).

    Article  ADS  Google Scholar 

  36. G. Hellstern, R. Alkofer, M. Oettel, H. Reinhardt, Nucl. Phys. A 627, 679 (1997).

    Article  ADS  Google Scholar 

  37. M. Oettel, G. Hellstern, R. Alkofer, H. Reinhardt, Phys. Rev. C 58, 2459 (1998).

    Article  ADS  Google Scholar 

  38. J. Praschifka, R.T. Cahill, C.D. Roberts, Int. J. Mod. Phys. A 4, 4929 (1989).

    Article  ADS  Google Scholar 

  39. A. Bender, C.D. Roberts, L. v. Smekal, Phys. Lett. B 380, 7 (1996).

    Article  ADS  Google Scholar 

  40. G. Hellstern, R. Alkofer, H. Reinhardt, Nucl. Phys. A 625, 697 (1997).

    Article  ADS  Google Scholar 

  41. R. Oehme, Int. J. Mod. Phys. A 10, 1995 (1995).

    Article  ADS  Google Scholar 

  42. J. Praschifka, R.T. Cahill, C.D. Roberts, Mod. Phys. Lett. A 3, 1595 (1988).

    Article  ADS  Google Scholar 

  43. S. Mandelstam, Proc. Roy. Soc. A 233, 248 (1955).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. K. Otha, Phys. Rev. C 40, 1335 (1989).

    Article  ADS  Google Scholar 

  45. S. Wang, M.K. Banerjee, Phys. Rev. C 54, 2883 (1996).

    Article  ADS  Google Scholar 

  46. F. Gross, D.O. Riska, Phys. Rev. C 36, 1928 (1987).

    Article  ADS  Google Scholar 

  47. J. Carlson, R. Schiavilla, Rev. Mod. Phys. 70, 743 (1998).

    Article  ADS  Google Scholar 

  48. A.N. Kvinikhidze, B. Blankleider, Phys. Rev. C 60, 044003 (1999); ibid. 044004.

  49. J.C.R. Bloch et. al., Phys. Rev. C 60, 062201 (1999); eprint, nucl-th/9911068.

  50. N. Ishii, private discussions; see also, The PCAC Relation in the Nucleon Sector in the NJL Model in the BS/Faddeev Approach, talk presented at KEK-Tanashi International Symposium on Hadrons and Nuclei, Tokyo, Dec. 1998, Nucl. Phys. A, to be published.

  51. A.N. Kvinikhidze, B. Blankleider, e-print, nuclth/ 9912003.

  52. R. Peierls, The Commutation Laws of Relativistic Quantum Field Theory, Proc. Roy. Soc. A 214, 143 (1952); see also, sect. I.4 in R. Haag, Local Quantum Physics (Springer, Edition, 1996) 2nd edition.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  53. I.J.R. Aitchison, A.J.G. Hey, Gauge theories in Particle Physics (Adam Hilger, Bristol and Philadelphia, 1989), p. 194.

    Book  MATH  Google Scholar 

  54. G. Hoehler et al., Nucl. Phys. B 114, 505 (1976).

    Article  ADS  Google Scholar 

  55. P.E. Bosted et al., Phys. Rev. Lett. 68, 3841 (1992).

    Article  ADS  Google Scholar 

  56. S. Platchkov et al., Nucl. Phys. A 510, 740 (1990).

    Article  ADS  Google Scholar 

  57. C. Weiss, A. Buck, R. Alkofer, H. Reinhardt, Phys. Lett. B 312, 6 (1993).

    Article  ADS  Google Scholar 

  58. M. Oettel, R. Alkofer, L. von Smekal, to be published.

  59. F.T. Hawes, M.A. Pichowsky, Phys. Rev. C 59, 1743 (1999).

    Article  ADS  Google Scholar 

  60. W.H. Press et al., Numerical Recipes (Cambridge University Press, Cambridge, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Weise

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oettel, M., Pichowsky, M.A. & von Smekal, L. Current conservation in the covariant quark-diquark model of the nucleon. Eur. Phys. J. A 8, 251–281 (2000). https://doi.org/10.1007/s100530050034

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s100530050034

PACS

Navigation