Skip to main content
Log in

Temperature-dependent ionization potential of sodium clusters

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The ionization potential of sodium clusters (8 ≤ N ≤ 55) at a finite temperature is studied using density functional theory and ab initio molecular dynamics. The threshold regions of the photoionization efficiency curves are deduced from the integrated IP distributions, which are obtained from the energy eigenvalues of the highest occupied Kohn-Sham states during molecular dynamics by applying a theoretically well-defined shift. The calculated ionization potentials are directly compared to the experimental values. The energetically best geometry of Na55 is found to be a slightly distorted icosahedron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993).

    Article  ADS  Google Scholar 

  2. W.A. Saunders, Ph.D. thesis, University of California, 1986.

  3. M. Kappes, M. Schär, U. Röthlisberger, C. Yeretzian, E. Schumacher, Chem. Phys. Lett. 143, 251 (1988).

    Article  ADS  Google Scholar 

  4. J. Persson, Ph.D. thesis, University of California, 1991; M.L. Homer, J.L. Persson, E.C. Honea, R. Whetten, Z. Phys. D 22, 441 (1991).

  5. C. Yannouleas, U. Landman, Phys. Rev. B 51, 1902 (1995).

    Article  ADS  Google Scholar 

  6. M. Koskinen, M. Manninen, Phys. Rev. B 54, 14796 (1996).

    Article  ADS  Google Scholar 

  7. O. Frank, J.M. Rost, Chem. Phys. Lett. 271, 367 (1997).

    Article  ADS  Google Scholar 

  8. M. Madjet, P.A. Hervieux, contribution to ISSPIC9.

  9. B. Wästberg, A. Rosén, Z. Phys. D 18, 267 (1991).

    Article  ADS  Google Scholar 

  10. C. Yannouleas, U. Landman, Phys. Rev Lett. 78, 1424 (1997)

    Article  ADS  Google Scholar 

  11. J. Akola, H. Häkkinen, M. Manninen, Eur. Phys. J. D (in print).

  12. T. Reiners, C. Ellert, M. Schmidt, H. Haberland, Phys. Rev. Lett. 74, 1558 (1995).

    Article  ADS  Google Scholar 

  13. R.N. Barnett, U. Landman, Phys. Rev. B 48, 2081 (1993).

    Article  ADS  Google Scholar 

  14. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980); S.H. Vosko, L. Wilk, J. Phys. C 15, 2139 (1982).

    Article  ADS  Google Scholar 

  15. L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).

    Article  ADS  Google Scholar 

  16. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  ADS  Google Scholar 

  17. D.J. Tozer, N.C. Handy, J. Chem. Phys. 108, 2545 (1998); D.J. Tozer, N.C. Handy, J. Chem. Phys. 109, 10180 (1998).

    Article  ADS  Google Scholar 

  18. J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).

    Article  ADS  Google Scholar 

  19. J.P. Perdew, M. Levy, Phys. Rev. Lett. 51, 1884 (1983).

    Article  ADS  Google Scholar 

  20. J.P. Perdew, K. Burke, Int. J. Quantum. Chem. 57 (1996).

  21. J. Akola, H. Häkkinen, M. Manninen, Phys. Rev. B 58, 3601 (1998).

    Article  ADS  Google Scholar 

  22. J. Akola, M. Manninen, H. Häkkinen, U. Landman, X. Li, L.-S. Wang, Phys. Rev. B 60, 11297 (1999).

    Article  ADS  Google Scholar 

  23. X. Li, H. Wu, X.-B. Wang, L.-S. Wang, Phys. Rev Lett. 81, 1909 (1998).

    Article  ADS  Google Scholar 

  24. H.G. Limberger, T.P. Martin, J. Chem. Phys. 90, 2979 (1989).

    Article  ADS  Google Scholar 

  25. A. Rytkönen, H. Häkkinen, M. Manninen, Phys. Rev. Lett. 80, 3940 (1998); A. Rytkönen, H. Häkkinen, M. Manninen, Eur. Phys. J. D (in print).

    Article  ADS  Google Scholar 

  26. C. Bréchignac, P. Cahuzac, Chem. Phys. Lett. 117 365 (1985).

    Article  ADS  Google Scholar 

  27. S. Kümmel, P.-G. Reinhard, M. Brack, contribution to ISSPIC9.

  28. I. Hamamoto, B. Mottelson, H. Xie, X.Z. Zhang, Z. Phys. D 21, 163 (1991).

    Article  ADS  Google Scholar 

  29. S. Frauendorf, V.V. Pashkevich, Z. Phys. D 26, S98 (1993).

    Article  ADS  Google Scholar 

  30. S.M. Reimann, M. Brack, K. Hansen, Z. Phys. D 28, 235 (1993).

    Article  ADS  Google Scholar 

  31. S.M. Reimann, S. Frauendorf, M. Brack, Z. Phys. D 34, 125 (1995).

    Article  ADS  Google Scholar 

  32. T.P. Martin, S. Bjørnholm, J. Borggreen, C. Bréchignac, P. Cahuzac, K. Hansen, J. Pedersen, Chem. Phys. Lett. 186, 53 (1991).

    Article  ADS  Google Scholar 

  33. T.P. Martin, U. Näher, H. Schaber, U. Zimmermann, J. Chem. Phys. 100, 2322 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Akola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akola, J., Rytkönen, A., Häkkinen, H. et al. Temperature-dependent ionization potential of sodium clusters. Eur. Phys. J. D 8, 93–99 (2000). https://doi.org/10.1007/s10053-000-9070-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10053-000-9070-z

PACS

Navigation