Skip to main content
Log in

Magnetic properties and spin waves of bilayer magnets in a uniform field

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract:

The two-layer square lattice quantum antiferromagnet with spins 12 shows a zero-field magnetic order-disorder transition at a critical ratio of the inter-plane to intra-plane couplings. Adding a uniform magnetic field tunes the system to canted antiferromagnetism and eventually to a fully polarized state; similar behavior occurs for ferromagnetic intra-plane coupling. Based on a bond operator spin representation, we propose an approximate ground state wavefunction which consistently covers all phases by means of a unitary transformation. The excitations can be efficiently described as independent bosons; in the antiferromagnetic phase these reduce to the well-known spin waves, whereas they describe gapped spin-1 excitations in the singlet phase. We compute the spectra of these excitations as well as the magnetizations throughout the whole phase diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received 23 April 2001

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommer, T., Vojta, M. & Becker, K. Magnetic properties and spin waves of bilayer magnets in a uniform field. Eur. Phys. J. B 23, 329–339 (2001). https://doi.org/10.1007/s100510170052

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s100510170052

Navigation