Skip to main content
Log in

Investigations of the sublattice magnetizations M(T) in antiferromagnets with fourth-order exchange interactions: EuSrTe

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract:

We present a neutron scattering study of the temperature and composition dependence of the MnO-type superstructure reflection intensities in the diamagnetically diluted antiferromagnetic compounds EuxSr1-xTe. In these materials antiferromagnetic biquadratic and ferromagnetic three-spin interactions have been identified recently. These fourth-order non-Heisenberg interactions are able to create their own order parameter which is believed to govern the order of the transverse moment components and which, hence, is directed perpendicular to the common Heisenberg order parameter. The observed MnO-type diffraction intensities originate in the sublattice magnetizations, , of both order parameters. Due to the different composition dependencies for biquadratic interaction processes and three-spin interaction processes , the ferromagnetic three-spin interactions dominate for x > x c =0.85, while for x <0.85 the antiferromagnetic biquadratic interactions dominate. Associated with this sign change in the fourth-order interaction sum the transverse order parameter changes from the antiferromagnetic MnO type for x <0.85 to ferromagnetic for x >0.85. This is noticed as a sudden decrease of the low-temperature MnO scattering intensities at x c =0.85. Although susceptibility measurements reveal clearly a ferromagnetic component for x >0.85 no ferromagnetic Bragg intensities were observed in standard neutron scattering spectra using EuTe powder samples. We explain this by the competition of antiferromagnetic biquadratic and ferromagnetic three-spin interactions whereby a disturbed ferromagnetic superstructure may be generated which gives rise also to weak MnO-type diffraction lines. It is found that the resulting obeys a T2 law until a temperature as large as 0.75TN irrespective of the nature of the transverse order parameter. The T2 law must, hence, be common to both types of order parameter showing that the fourth-order interactions re-define the spin dynamics of both completely. From the linear composition dependence of the normalized T2 coefficient the existence of three-spin interactions is again confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received 23 July 1998 and Received in final form 12 October 1998

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köbler, U., Hoser, A., Graf, H. et al. Investigations of the sublattice magnetizations M(T) in antiferromagnets with fourth-order exchange interactions: EuSrTe. Eur. Phys. J. B 8, 217–224 (1999). https://doi.org/10.1007/s100510050684

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s100510050684

Navigation