Skip to main content
Log in

Kardiokompressionssysteme zur Reanimation im akuten Kreislaufstillstand

Cardiocompression systems for resuscitation in acute cardiac arrest

  • Leitthema
  • Published:
Notfall + Rettungsmedizin Aims and scope Submit manuscript

Zusammenfassung

Im Rahmen der kardiopulmonalen Reanimation wird beim akuten Herzkreislaufstillstand eine Herzdruckmassage mit einer Frequenz 100/min und einer Kompressionstiefe von 5 cm empfohlen. Damit dies im präklinischen Kreislaufstillstand sicher gewährleistet werden kann, haben in den letzten Jahren sog. nichtinvasive, automatische Kardiokompressionssysteme Einzug in die Notfallmedizin gehalten. In Deutschland sind derzeit das LUCAS™- sowie das AutoPulse™-System mit CE-Zeichen verfügbar. Beide Systeme sind batteriebetrieben für den mobilen Einsatz geeignet und erleichtern den Patiententransport unter ununterbrochener Kardiokompression. Ihre Vorteile liegen in einer definierten Kompressionstiefe und Geschwindigkeit sowie einer geringeren Gefährdung des Personals bei Transportfahrten. Während passive Systeme zur Kardiokompression/-dekompression einen Überlebensvorteil unter prähospitalen Bedingungen zeigen konnten, liegen für aktive, automatische Kardiokompressionssysteme noch keine Studien vor, die eine generelle Empfehlung für ihre Verwendung im Rettungsdienst geben würden. Für ihren Einsatz bei ausgewählten Patienten im Herzkatheterlabor besteht eine Empfehlung, da neben dem Strahlenschutz für das Personal diese Systeme eine invasive Diagnostik und Therapie erst ermöglichen. Für den erfolgreichen Einsatz sind ein entsprechendes Training des Personals sowie eine sorgfältige Patientenauswahl notwendig. Derzeit laufende, multizentrische Studien zum präklinischen Kreislaufstillstand werden in Zukunft die notwendige Evidenz und Datenbasis zur Identifikation von Patientengruppen schaffen, welche vom Einsatz automatischer Kardiokompressionssysteme profitieren.

Abstract

Recently published guidelines recommend external cardiocompression at a frequency of 100 per minute and a depth of 5 cm for out-of-hospital circulatory arrest patients. In these settings, automated cardiocompression devices can provide standardized patient support in preclinical emergency medicine. The LUCAS™ and the AutoPulse™, both CE-labelled systems, are currently available in Germany. Besides defined compression depth and frequency, both systems provide a better protection of the emergency transport personnel. Non-automated cardiocompression-decompression devices for augmented manual chest compression recently proved a survival benefit in out-of-hospital cardiac arrest. However, due to lack of evidence, the use of automated thorax compression devices in this setting is still under discussion. The use of active compression devices is recommend in selected patients in the catheter laboratory as it reduces radiation exposure of the personnel and facilitates invasive angiographic and therapeutic procedures in acute circulatory arrest. Successful use of active chest compression devices requires intense training and appropriate indications. Currently ongoing randomized trials in out-of-hospital resuscitation will provide sufficient data for careful patient selection and evidence-based use of automated mechanical chest compression devices in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Atwood C, Eisenberg MS, Herlitz J et al (2005) Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation 67:75–80

    Article  PubMed  Google Scholar 

  2. Auerbach PS, Morris JA Jr, Phillips JB Jr et al (1987) An analysis of ambulance accidents in Tennessee. JAMA 258:1487–1490

    Article  PubMed  CAS  Google Scholar 

  3. Aufderheide TP, Frascone RJ, Wayne MA et al (2011) Standard cardiopulmonary resuscitation versus active compression-decompression cardiopulmonary resuscitation with augmentation of negative intrathoracic pressure for out-of-hospital cardiac arrest: a randomised trial. Lancet 377:301–311

    Article  PubMed  Google Scholar 

  4. Aufderheide TP, Nichol G, Rea TD et al (2011) A trial of an impedance threshold device in out-of-hospital cardiac arrest. N Engl J Med 365:798–806

    Article  PubMed  CAS  Google Scholar 

  5. Bonnemeier H, Olivecrona G, Simonis G et al (2009) Automated continuous chest compression for in-hospital cardiopulmonary resuscitation of patients with pulseless electrical activity: a report of five cases. Int J Cardiol 136:e39–e50

    Article  PubMed  Google Scholar 

  6. Brooks SC, Bigham BL, Morrison LJ (2011) Mechanical versus manual chest compressions for cardiac arrest. Cochrane Database Syst Rev CD007260

  7. Cave DM, Gazmuri RJ, Otto CW et al (2011) Part 7: CPR techniques and devices: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 122:720–728

    Article  Google Scholar 

  8. De Graeve K, Deroo KF, Calle PA et al (2003) How to modify the risk-taking behaviour of emergency medical services drivers? Eur J Emerg Med 10:111–116

    Article  Google Scholar 

  9. Eftestol T, Sunde K, Steen PA (2002) Effects of interrupting precordial compressions on the calculated probability of defibrillation success during out-of-hospital cardiac arrest. Circulation 105:2270–2273

    Article  PubMed  Google Scholar 

  10. Ferrari M, Hekmat K, Jung C et al (2011) Better outcome after cardiopulmonary resuscitation using percutaneous emergency circulatory support in non-coronary patients compared to those with myocardial infarction. Acute Card Care 13:30–34

    Article  PubMed  Google Scholar 

  11. Hallstrom A, Rea TD, Sayre MR et al (2006) Manual chest compression vs use of an automated chest compression device during resuscitation following out-of-hospital cardiac arrest: a randomized trial. JAMA 295:2620–2628

    Article  PubMed  CAS  Google Scholar 

  12. Halperin HR, Paradis N, Ornato JP et al (2004) Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest: improved hemodynamics and mechanisms. J Am Coll Cardiol 44:2214–2220

    Article  PubMed  Google Scholar 

  13. Hollenberg J, Herlitz J, Lindqvist J et al (2008) Improved survival after out-of-hospital cardiac arrest is associated with an increase in proportion of emergency crew-witnessed cases and bystander cardiopulmonary resuscitation. Circulation 118:389–396

    Article  PubMed  Google Scholar 

  14. Ikeno F, Kaneda H, Hongo Y et al (2006) Augmentation of tissue perfusion by a novel compression device increases neurologically intact survival in a porcine model of prolonged cardiac arrest. Resuscitation 68:109–118

    Article  PubMed  Google Scholar 

  15. Liao Q, Sjoberg T, Paskevicius A et al (2010) Manual versus mechanical cardiopulmonary resuscitation. An experimental study in pigs. BMC Cardiovasc Disord 10:53

    Article  PubMed  Google Scholar 

  16. Nichol G, Thomas E, Callaway CW et al (2008) Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA 300:1423–1431

    Article  PubMed  CAS  Google Scholar 

  17. Nolan JP, Soar J, Zideman DA et al (2011) European Resuscitation Council guidelines for resuscitation 2010 section 1. Executive summary. Resuscitation 81:1219–1276

    Article  Google Scholar 

  18. Ock SM, Kim YM, Chung JH et al (2011) Influence of physical fitness on the performance of 5 minute continuous chest compression. Eur J Emerg Med 18(5):251–256

    Article  PubMed  Google Scholar 

  19. Ong ME, Ornato JP, Edwards DP et al (2006) Use of an automated, load-distributing band chest compression device for out-of-hospital cardiac arrest resuscitation. JAMA 295:2629–2637

    Article  PubMed  CAS  Google Scholar 

  20. Paradis NA, Martin GB, Rivers EP et al (1990) Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA 263:1106–1113

    Article  PubMed  CAS  Google Scholar 

  21. Schewe JC, Heister U, Hoeft A et al (2008) Notarzt und AutoPulse – ein gutes Duo im praklinischen Rettungsdienst? Fallbeispiel und Erfahrungsbericht. Anaesthesist 57:582–588

    Article  PubMed  Google Scholar 

  22. Smekal D, Johansson J, Huzevka T et al (2011) A pilot study of mechanical chest compressions with the LUCAS device in cardiopulmonary resuscitation. Resuscitation 82:702–706

    Article  PubMed  Google Scholar 

  23. Smekal D, Johansson J, Huzevka T et al (2011) A pilot study of mechanical chest compressions with the LUCAS device in cardiopulmonary resuscitation. Resuscitation 82:702–706

    Article  PubMed  Google Scholar 

  24. Steen S, Liao Q, Pierre L et al (2002) Evaluation of LUCAS, a new device for automatic mechanical compression and active decompression resuscitation. Resuscitation 55:285–299

    Article  PubMed  Google Scholar 

  25. Timerman S, Cardoso LF, Ramires JA et al (2004) Improved hemodynamic performance with a novel chest compression device during treatment of in-hospital cardiac arrest. Resuscitation 61:273–280

    Article  PubMed  Google Scholar 

  26. Vanden Hoek TL, Morrison LJ, Shuster M et al (2010) Part 12: cardiac arrest in special situations: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 122:829–861

    Article  Google Scholar 

  27. Wagner H, Terkelsen CJ, Friberg H et al (2010) Cardiac arrest in the catheterisation laboratory: a 5 year experience of using mechanical chest compressions to facilitate PCI during prolonged resuscitation efforts. Resuscitation 81:383–387

    Article  PubMed  Google Scholar 

  28. Wik L (2000) Automatic and manual mechanical external chest compression devices for cardiopulmonary resuscitation. Resuscitation 47:7–25

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Die Autoren geben an, dass keine Interessenkonflikte bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ferrari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, M., Lauten, A. & Figulla, H. Kardiokompressionssysteme zur Reanimation im akuten Kreislaufstillstand. Notfall Rettungsmed 14, 618–623 (2011). https://doi.org/10.1007/s10049-011-1416-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10049-011-1416-1

Schlüsselworte

Keywords

Navigation