Skip to main content
Log in

Blutverlust, Sauerstoffatmung und primäre Hypertonie

Blood loss, oxygen breathing and primary hypertension

  • Originalien
  • Published:
Notfall & Rettungsmedizin Aims and scope Submit manuscript

Zusammenfassung

Primär hypertensive Menschen und Tiere haben eine geringere Toleranz zu Beginn einer Hämorrhagie. Sie zeigen bei gleichem Blutverlust einen größeren Blutdruckabfall und verlieren bei Ausbluten auf den gleichen hypotensiven arteriellen Druck mehr Blut, als normotensive Kontrollen. Die Atmung O2-reicher Gasgemische nach Blutverlust kann Kreislauf und Atmung stabilisieren durch

  1. 1.

    Verengung der Arteriolen,

  2. 2.

    Venokonstriktion und Entleerung der Blutspeicher mit Verbesserung der Herzfüllung,

  3. 3.

    Verstärkung der Lungenventilation durch Korrektur der atmungsdepressiv wirkenden Hirnhypoxie.

Diese O2-Effekte sind keine Reflex- sondern direkte Gewebewirkungen, d. h. sie sind auch bei ausgefallener Funktion des Gehirns vorhanden. Sie sind auch an spontan hypertensiven Ratten nachweisbar, aber schwächer als bei normotensiven Tieren.

Abstract

Primary hypertensive humans and animals show a strikingly low capacity to tolerate acute hemorrhage. They exhibit a greater drop in arterial pressure in relation to the same volume loss or lose more blood when bleeding at the same hypotensive arterial pressure than normotensive controls. Breathing hyperoxic gas mixtures improves the ability of the cardiorespiratory system to resist hemorrhage (1) by constricting systemic arterioles, (2) by increasing the overall venous tone, thus supporting cardiac filling, and (3) by enforcing alveolar ventilation, probably secondary to improved cerebral oxygenation. The beneficial effects of hyperoxia are presumably not reflex but direct tissue effects of oxygen, i.e., they are also present after severe brain damage. They are demonstrable but weaker in genetically hypertensive than in normotensive rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Adir Y, Bitterman N, Katz E et al. (1995) Salutary consequences of oxygen therapy on the long-term outcome of hemorrhagic shock in awake unrestrained rats. Undersea Hyperb Med 22: 23–30

    CAS  PubMed  Google Scholar 

  2. Bettin D, Koster G, Exner J et al. (1998) Cardiorespiratory responses of normotensive (WKY) and spontaneously hypertensive (SHR) rats to hyperoxia and non-hypotensive haemorrhage combined. Nieren Hochdruckkrankh 27: 75–81

    Google Scholar 

  3. Bettin D, Gross C, Hertting K et al. (2004) Different cardiorespiratory 1 responses to hemorrhage and hyperoxia in normotensive (WKY) and spontaneously hypertensive (SHR) rats. Acta Physiol Hung 91: 23–48

    Article  CAS  PubMed  Google Scholar 

  4. Bitterman H, Reissman P, Bitterman N et al. (1991) Oxygen therapy in hemorrhagic shock. Circ Shock 33: 183–191

    CAS  PubMed  Google Scholar 

  5. Bond RF, Johnson G (1985) The influence of hypertension upon the normalcardiovascular responses to hemorrhagic hypotension and shock. Experientia 41: 607–609

    CAS  PubMed  Google Scholar 

  6. Burke MJ, Stekiel WJ, Lombard JH (1984) Reduced venoconstrictor reserve in spontaneously hypertensive rats subjected to hemorrhagic stress. Circ Shock 14: 25–37

    CAS  PubMed  Google Scholar 

  7. Drolet G, DeChamplain J (1992) Hyperresponsiveness of sympathoadrenal system in conscious DOCA-NaCl and SHR rats in response to acute haemorrhagic hypotension. Clin Invest Med 15: 360–370

    CAS  PubMed  Google Scholar 

  8. Fukuda Y, Sato A, Trzebski A (1987) Carotid chemoreceptor discharge responses to hypoxia and hypercapnia in normotensive and spontaneously hypertensive rats. J Auton Nerv Syst 19: 1–11

    Article  CAS  PubMed  Google Scholar 

  9. Greenberg S, Wilborn W (1982) Functional and structural changes in veins in spontaneous hypertension. Arch Int Pharmacodyn Ther 258: 208–233

    CAS  PubMed  Google Scholar 

  10. Grisk O, Exner J, Schmidt M et al. (1995) Cardiorespiratory responses to acute hypoxia and hyperoxia in adult and neonatal spontaneously hypertensive and normotensive rats. Clin Exp Hypertens 17: 1025–1047

    CAS  PubMed  Google Scholar 

  11. Habler O, Kleen M, Kemming G et al. (2002) Hyperoxia in extreme hemodilution. Eur Surg Res 34: 181–187

    Article  CAS  PubMed  Google Scholar 

  12. Hagberg H, Haljamäe H, Johansson B et al. (1983) Liver and skeletal muscle metabolism, extracellular K+-concentrations, and survival in spontaneously hypertensive rats following acute blood loss. Circ Shock 10: 61–70

    CAS  PubMed  Google Scholar 

  13. Jennings DB, Lockett HJ (2000) Angiotensin stimulates respiration in spontaneously hypertensive rats. Am J Physiol 278: R1125–R1133

    CAS  Google Scholar 

  14. Lombard JH, Hess ME, Stekiel WJ (1984) Neural and local control of arterioles in SHR. Hypertension 6: 530–535

    CAS  PubMed  Google Scholar 

  15. Marshall JM (1994) Peripheral chemoreceptors and cardiovascular regulation. Physiol Rev 74: 543–594

    CAS  PubMed  Google Scholar 

  16. Olson EB, Vidruk EH, Dempsey JA (1988) Carotid body excision significantly changes ventilatory control in awake rats. J Appl Physiol 64: 666–671

    Article  PubMed  Google Scholar 

  17. Radisavljevic Z (1995) Hypertension-induced dysfunction of circulation in hemorrhagic shock. Am J Hypertens 8: 761–767

    Article  CAS  PubMed  Google Scholar 

  18. Ratcliffe PJ, Moonen CT, Ledingham JGG et al. (1989) Timing of the onset of changes in renal energetics in relation to blood pressure and glomerular filtration in haemorrhagic hypotension in the rat. Nephron 51: 225–232

    CAS  PubMed  Google Scholar 

  19. Rixen D, Raum M, Bouillon B et al. (2001) Prognoseabschätzung des Schwerverletzten.—Eine Analyse von 2069 Patienten des Traumaregisters der DGU. Unfallchirurg 104: 230–239

    Article  CAS  PubMed  Google Scholar 

  20. Rockhold RW, Crofton JT, Brooks DP et al. (1984) The response of vasopressin and blood pressure to hemorrhage in SHR and WKY rats. Clin Exp Hypertens A 6: 827–849

    CAS  PubMed  Google Scholar 

  21. Safar ME, London GM (1987) Arterial and venous compliance in sustained essential hypertension. Hypertension 10: 133–139

    CAS  PubMed  Google Scholar 

  22. Sinert R, Guerrero P, Quintana E et al. (2000) The effect of hypertension on the response to blood loss in a rodent model. Acad Emerg Med 7: 318–326

    CAS  PubMed  Google Scholar 

  23. Sinert R, Spencer MT, Wilson R et al. (2002) The effect of hypertension on uncontrolled hemorrhage in a rodent model. Acad Emerg Med 9: 767–774

    Article  PubMed  Google Scholar 

  24. Sukhotnik I, Krausz MM, Brod V et al. (2002) Divergent effects of oxygen therapy in four models of uncontrolled hemorrhagic shock. Shock 18: 277–284

    Article  PubMed  Google Scholar 

  25. Trippodo NC, Yamamoto J, Frohlich ED (1981) Whole-body venous capacity and effective total tissue compliance in SHR. Hypertension 3: 104–112

    CAS  PubMed  Google Scholar 

  26. Trzebski A (1992) Arterial chemoreceptor reflex and hypertension. Hypertension 19: 562–566

    CAS  PubMed  Google Scholar 

  27. Waring WS, Thomson AJ, Adwani SH et al. (2003) Cardiovascular effects of acute oxygen administration in healthy adults. J Caddiovasc Pharmacol 42: 245–250

    Article  CAS  Google Scholar 

  28. Weil JV, Stevens T, Pickett CK et al. (1998) Strain-associated differences in hypoxic chemosensitivity of the carotid body in rats. Am J Physiol 274: L767–L774

    CAS  PubMed  Google Scholar 

  29. Wennberg E, Hagberg H, Haljamäe H (1984) The response of the awake spontaneously hypertensive rat (SHR) to acute blood loss. Acta Anaesthesiol Scand 28: 457–461

    CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Honig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honig, A. Blutverlust, Sauerstoffatmung und primäre Hypertonie. Notfall & Rettungsmedizin 7, 391–398 (2004). https://doi.org/10.1007/s10049-004-0680-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10049-004-0680-8

Schlüsselwörter

Keywords

Navigation