Skip to main content
Log in

Two more families supporting the existence of monogenic spinocerebellar ataxia 48

  • Short Communication
  • Published:
Neurogenetics Aims and scope Submit manuscript

Abstract

The reduced penetrance of TBP intermediate alleles and the recently proposed possible digenic TBP/STUB1 inheritance raised questions on the possible mechanism involved opening a debate on the existence of SCA48 as a monogenic disorder. We here report clinical and genetic results of two apparently unrelated patients carrying the same STUB1 variant(c.244G > T;p.Asp82Tyr) with normal TBP alleles and a clinical picture fully resembling SCA48, including cerebellar ataxia, dysarthria and mild cognitive impairment. This report provides supportive evidence that this specific ataxia can also occur as a monogenic disease, considering classical TBP allelic ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Perlman S Hereditary Ataxia Overview. In: Adam MP, Feldman J, Mirzaa GM () GeneReviews®. (1998) Seattle (WA): University of Washington, Seattle

  2. Jayadev S, Bird TD (2013) Hereditary ataxias: overview. Genet Med 15(9):673–683. https://doi.org/10.1038/gim.2013.28

    Article  CAS  PubMed  Google Scholar 

  3. Linares AJ, Fogel BL (2023) Late-onset hereditary ataxias with dementia. Curr Opin Neurol 36(4):324–334. https://doi.org/10.1097/WCO.0000000000001170

    Article  PubMed  Google Scholar 

  4. Magri S, Nanetti L, Gellera C et al (2022) Digenic inheritance of STUB1 variants and TBP polyglutamine expansions explains the incomplete penetrance of SCA17 and SCA48. Genet Med 24(1):29–40. https://doi.org/10.1016/j.gim.2021.08.003

    Article  CAS  PubMed  Google Scholar 

  5. Barbier M, Davoine CS, Petit E et al (2023) Intermediate repeat expansions of TBP and STUB1: genetic modifier or pure digenic inheritance in spinocerebellar ataxias? Genet Med 25(2):100327. https://doi.org/10.1016/j.gim.2022.10.009

    Article  CAS  PubMed  Google Scholar 

  6. Saito R, Tada Y, Oikawa D et al (2022) Spinocerebellar ataxia type 17-digenic TBP/STUB1 disease: neuropathologic features of an autopsied patient. Acta Neuropathol Commun 10(1):177. https://doi.org/10.1186/s40478-022-01486-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhou Y, Pan Q, Pires DEV al (2023) DDMut: predicting effects of mutations on protein stability using deep learning. Nucleic Acids Res 51(W1):W122–W128. https://doi.org/10.1093/nar/gkad472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. D’Andrea LD, Regan L (2003) TPR proteins: the versatile helix. Trends Biochem Sci 28(12):655–662. https://doi.org/10.1016/j.tibs.2003.10.007

    Article  CAS  PubMed  Google Scholar 

  10. Manichaikul A, Mychaleckyj JC, Rich SS et al (2010) Robust relationship inference in genome-wide association studies. Bioinformatics 26(22):2867–2873. https://doi.org/10.1093/bioinformatics/btq559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Genis D, Ortega-Cubero S, San Nicolás H et al (2018) Heterozygous STUB1 mutation causes familial ataxia with cognitive affective syndrome (SCA48). Neurology 91(21):e1988–e1998. https://doi.org/10.1212/WNL.0000000000006550

    Article  CAS  PubMed  Google Scholar 

  12. Roux T, Barbier M, Papin M et al (2020) Clinical, neuropathological, and genetic characterization of STUB1 variants in cerebellar ataxias: a frequent cause of predominant cognitive impairment. Genet Med 22(11):1851–1862. https://doi.org/10.1038/s41436-020-0899-x

    Article  CAS  PubMed  Google Scholar 

  13. Monckton DG (2021) The contribution of somatic expansion of the CAG repeat to Symptomatic Development in Huntington’s Disease: a historical perspective. J Huntingtons Dis 10(1):7–33. https://doi.org/10.3233/JHD-200429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

F.P. and V.C. were supported by the Italian Ministry of Health with the “Ricerca Corrente” funding. We are very grateful to Dr Chiara La Morgia for ophthalmological evaluation, Prof Alessandra Lugaresi and Dr. Roberta Pantieri for patients’ clinical report, and Francesco Casadei for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavia Palombo.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palombo, F., Vaisfeld, A., Tropeano, V.C. et al. Two more families supporting the existence of monogenic spinocerebellar ataxia 48. Neurogenetics (2024). https://doi.org/10.1007/s10048-024-00758-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10048-024-00758-8

Keywords

Navigation