Skip to main content
Log in

The Apo gene's genetic variants: hidden role in Asian vascular risk

  • Review
  • Published:
Neurogenetics Aims and scope Submit manuscript

Abstract

Vascular risk factors, including diabetes, hypertension, hyperlipidemia, and obesity, pose significant health threats with implications extending to neuropsychiatric disorders such as stroke and Alzheimer's disease. The Asian population, in particular, appears to be disproportionately affected due to unique genetic predispositions, as well as epigenetic factors such as dietary patterns and lifestyle habits. Existing management strategies often fall short of addressing these specific needs, leading to greater challenges in prevention and treatment. This review highlights a significant gap in our understanding of the impact of genetic screening in the early detection and tailored treatment of vascular risk factors among the Asian population. Apolipoprotein, a key player in cholesterol metabolism, is primarily associated with dyslipidemia, yet emerging evidence suggests its involvement in conditions such as diabetes, hypertension, and obesity. While genetic variants of vascular risk are ethnic-dependent, current evidence indicates that epigenetics also exhibits ethnic specificity. Understanding the interplay between Apolipoprotein and genetics, particularly within diverse ethnic backgrounds, has the potential to refine risk stratification and enhance precision in management. For Caucasian carrying the APOA5 rs662799 C variant, pharmacological interventions are recommended, as dietary interventions may not be sufficient. In contrast, for Asian populations with the same genetic variant, dietary modifications are initially advised. Should dyslipidemia persist, the consideration of pharmaceutical agents such as statins is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Biswas T, Townsend N, Das GR et al (2023) Clustering of metabolic and behavioural risk factors for cardiovascular diseases among the adult population in South and Southeast Asia: findings from WHO STEPS data. Lancet Reg Heal - Southeast Asia 12:100164. https://doi.org/10.1016/j.lansea.2023.100164

    Article  Google Scholar 

  2. Qiao J, Lu WH, Wang J et al (2014) Vascular risk factors aggravate the progression of Alzheimer’s disease: A 3-year follow-up study of Chinese population. Am J Alzheimers Dis Other Demen 29:521–525. https://doi.org/10.1177/1533317514522853

    Article  PubMed  PubMed Central  Google Scholar 

  3. Singh V, Prabhakaran S, Chaturvedi S et al (2017) An examination of stroke risk and burden in South Asians. J Stroke Cerebrovasc Dis 26:2145–2153. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.04.036

    Article  PubMed  Google Scholar 

  4. Kizza J, Lewington S, Mappin-Kasirer B et al (2019) Cardiovascular risk factors and Parkinson’s disease in 500,000 Chinese adults. Ann Clin Transl Neurol 6:624–632. https://doi.org/10.1002/acn3.732

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yeh EJ, Grigolon RB, Rodrigues SR, A Bueno AP (2023) Systematic literature review and meta-analysis of cardiovascular risk factor management in selected Asian countries. J Comp Eff Res 12. https://doi.org/10.57264/cer-2022-0085

  6. Yin Y-W, Sun Q-Q, Wang P-J et al (2014) Genetic polymorphism of apolipoprotein A5 gene and susceptibility to type 2 diabetes mellitus: a meta-analysis of 15,137 subjects. PLoS ONE 9:e89167. https://doi.org/10.1371/journal.pone.0089167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fatma R, Chauhan W, Riyaz S et al (2023) Genetic association analysis of rs662799 ( − 1131A > G) polymorphism of APOA5 gene with morphometric and physio-metric traits using multiplex PCR. Egypt J Med Hum Genet 24:19. https://doi.org/10.1186/s43042-023-00398-x

    Article  Google Scholar 

  8. Doo M, Won S, Kim Y (2015) Association between the APOB rs1469513 polymorphism and obesity is modified by dietary fat intake in Koreans. Nutrition 31:653–658. https://doi.org/10.1016/j.nut.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  9. Kang R, Kim M, Chae JS et al (2014) Consumption of whole grains and legumes modulates the genetic effect of the APOA5 -1131C variant on changes in triglyceride and apolipoprotein A-V concentrations in patients with impaired fasting glucose or newly diagnosed type 2 diabetes. Trials 15:100. https://doi.org/10.1186/1745-6215-15-100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Luis Roman D, Primo D, Izaola O, Aller R (2022) Association of the APOA-5 genetic variant rs662799 with metabolic changes after an intervention for 9 months with a low-calorie diet with a Mediterranean profile. Nutrients 14. https://doi.org/10.3390/nu14122427

  11. Mehta A, Shapiro MD (2022) Apolipoproteins in vascular biology and atherosclerotic disease. Nat Rev Cardiol 19:168–179. https://doi.org/10.1038/S41569-021-00613-5

    Article  CAS  PubMed  Google Scholar 

  12. Nielsen LB, Christoffersen C, Ahnström J, Dahlbäck B (2009) ApoM: gene regulation and effects on HDL metabolism. Trends Endocrinol Metab 20:66–71. https://doi.org/10.1016/j.tem.2008.11.003

    Article  CAS  PubMed  Google Scholar 

  13. Sacks FM (2015) The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia. Curr Opin Lipidol 26:56–63. https://doi.org/10.1097/MOL.0000000000000146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhong S, Goldberg IJ, Bruce C et al (1994) Human ApoA-II inhibits the hydrolysis of HDL triglyceride and the decrease of HDL size induced by hypertriglyceridemia and cholesteryl ester transfer protein in transgenic mice. J Clin Invest 94:2457–2467. https://doi.org/10.1172/JCI117614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Su X, Peng D (2020) The exchangeable apolipoproteins in lipid metabolism and obesity. Clin Chim Acta 503:128–135. https://doi.org/10.1016/j.cca.2020.01.015

    Article  CAS  PubMed  Google Scholar 

  16. Humardani FM, Mulyanata LT, Dwi Putra SE (2023) Adipose cell-free DNA in diabetes. Clin Chim Acta 539:191–197. https://doi.org/10.1016/j.cca.2022.12.008

    Article  CAS  PubMed  Google Scholar 

  17. Cao X, Lu XM, Tuo X et al (2019) Angiotensin-converting enzyme 2 regulates endoplasmic reticulum stress and mitochondrial function to preserve skeletal muscle lipid metabolism. Lipids Health Dis 18:1–8. https://doi.org/10.1186/s12944-019-1145-x

    Article  CAS  Google Scholar 

  18. Ma C, Shi T, Song L et al (2022) Angiotensin(1–7) attenuates visceral adipose tissue expansion and lipogenesis by suppression of endoplasmic reticulum stress via Mas receptor. Nutr Metab 19:1–14. https://doi.org/10.1186/s12986-022-00716-x

    Article  CAS  Google Scholar 

  19. Saxton SN, Clark BJ, Withers SB et al (2019) Mechanistic links between obesity, diabetes, and blood pressure: role of perivascular adipose tissue. Physiol Rev 99:1701–1763. https://doi.org/10.1152/physrev.00034.2018

    Article  CAS  PubMed  Google Scholar 

  20. Corella D, Tai ES, Sorlí JV et al (2011) Association between the APOA2 promoter polymorphism and body weight in Mediterranean and Asian populations: replication of a gene-saturated fat interaction. Int J Obes 35:666–675. https://doi.org/10.1038/ijo.2010.187

    Article  CAS  Google Scholar 

  21. Duesing K, Charpentier G, Marre M et al (2009) Evaluating the association of common APOA2variants with type 2 diabetes. BMC Med Genet 10:13. https://doi.org/10.1186/1471-2350-10-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zeng Y, Wen S, Huan L et al (2023) Association of ApoE gene polymorphisms with serum lipid levels and the risk of type 2 diabetes mellitus in the Chinese Han population of central China. PeerJ 11:e15226. https://doi.org/10.7717/peerj.15226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pitchika A, Markus MRP, Schipf S et al (2022) Longitudinal association of Apolipoprotein E polymorphism with lipid profile, type 2 diabetes and metabolic syndrome: results from a 15 year follow-up study. Diabetes Res Clin Pract 185:109778. https://doi.org/10.1016/j.diabres.2022.109778

    Article  CAS  PubMed  Google Scholar 

  24. Zhang PH, Gao JL, Pu C et al (2016) A single-nucleotide polymorphism C-724 /del in the proter region of the apolipoprotein M gene is associated with type 2 diabetes mellitus. Lipids Health Dis 15:1–9. https://doi.org/10.1186/s12944-016-0307-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shi J, Liu Y, Liu Y et al (2018) Association between ApoE polymorphism and hypertension: a meta-analysis of 28 studies including 5898 cases and 7518 controls. Gene 675:197–207. https://doi.org/10.1016/j.gene.2018.06.097

    Article  CAS  PubMed  Google Scholar 

  26. Wang X, He J, Guo H et al (2017) Interactions of six SNPs in APOA1 gene and types of obesity on low HDL-C disease in Xinjiang pastoral area of China. Lipids Health Dis 16:187. https://doi.org/10.1186/s12944-017-0581-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. de Luis DA, Izaola O, Primo D, Aller R (2019) Implication of the rs670 variant of APOA1 gene with lipid profile, serum adipokine levels and components of metabolic syndrome in adult obese subjects. Clin Nutr 38:407–411. https://doi.org/10.1016/j.clnu.2017.12.007

    Article  CAS  PubMed  Google Scholar 

  28. Hsu M-C, Chang C-S, Lee K-T et al (2013) Central obesity in males affected by a dyslipidemia-associated genetic polymorphism on APOA1/C3/A4/A5 gene cluster. Nutr Diabetes 3:e61–e61. https://doi.org/10.1038/nutd.2013.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lakbakbi el Yaagoubi F, Charoute H, Bakhchane A et al (2015) Association analysis of APOA5 rs662799 and rs3135506 polymorphisms with obesity in Moroccan patients. Pathol Biol 63:243–247. https://doi.org/10.1016/j.patbio.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  30. Zhao X-N, Sun Q, Cao Y-Q et al (2021) Association between apolipoprotein gene polymorphisms and hyperlipidemia: a meta-analysis. BMC Genomic Data 22:14. https://doi.org/10.1186/s12863-021-00968-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Niu C, Luo Z, Yu L et al (2017) Associations of the APOB rs693 and rs17240441 polymorphisms with plasma APOB and lipid levels: a meta-analysis. Lipids Health Dis 16:166. https://doi.org/10.1186/s12944-017-0558-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guettier J-M, Georgopoulos A, Tsai MY et al (2005) Polymorphisms in the fatty acid-binding protein 2 and apolipoprotein C-III genes are associated with the metabolic syndrome and dyslipidemia in a South Indian population. J Clin Endocrinol Metab 90:1705–1711. https://doi.org/10.1210/jc.2004-1338

    Article  CAS  PubMed  Google Scholar 

  33. Chowdhary R, Masarkar N, Khadanga S (2022) Polymorphism in apolipoprotein C3 (APOC3) and Fatty Acid-Binding Proteins (FABP2) genes in nondiabetic dyslipidemic patients: a tertiary care hospital-based pilot study. J Lab Physicians 14:119–124. https://doi.org/10.1055/s-0041-1731949

    Article  CAS  PubMed  Google Scholar 

  34. Mohamed-Yassin M-S, Rosman N, Kamaruddin KN et al (2023) A systematic review and meta-analysis of the prevalence of dyslipidaemia among adults in Malaysia. Sci Rep 13:11036. https://doi.org/10.1038/s41598-023-38275-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thompson A, Danesh J (2006) Associations between apolipoprotein B, apolipoprotein AI, the apolipoprotein B/AI ratio and coronary heart disease: a literature-based meta-analysis of prospective studies. J Intern Med 259:481–492. https://doi.org/10.1111/j.1365-2796.2006.01644.x

    Article  CAS  PubMed  Google Scholar 

  36. Huxley RR, Barzi F, Lam TH et al (2011) Isolated low levels of high-density lipoprotein cholesterol are associated with an increased risk of coronary heart disease: an individual participant data meta-analysis of 23 studies in the asia-pacific region. Circulation 124:2056–2064. https://doi.org/10.1161/CIRCULATIONAHA.111.028373

    Article  CAS  PubMed  Google Scholar 

  37. Patel SA, Shivashankar R, Ali MK et al (2016) Is the “south Asian Phenotype” Unique to South Asians? Comparing cardiometabolic risk factors in the CARRS and NHANES studies. Glob Heart 11:89-96.e3. https://doi.org/10.1016/j.gheart.2015.12.010

    Article  PubMed  Google Scholar 

  38. Voisin S, Almén MS, Zheleznyakova GY et al (2015) Many obesity-associated SNPs strongly associate with DNA methylation changes at proximal promoters and enhancers. Genome Med 7:1–16. https://doi.org/10.1186/s13073-015-0225-4

    Article  CAS  Google Scholar 

  39. Viñuela A, Varshney A, van de Bunt M et al (2020) Genetic variant effects on gene expression in human pancreatic islets and their implications for T2D. Nat Commun 11:4912. https://doi.org/10.1038/s41467-020-18581-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Baca P, Barajas-Olmos F, Mirzaeicheshmeh E et al (2022) DNA methylation and gene expression analysis in adipose tissue to identify new loci associated with T2D development in obesity. Nutr Diabetes 12:1–7. https://doi.org/10.1038/s41387-022-00228-w

    Article  CAS  Google Scholar 

  41. Kim SA, Shin S (2021) Dietary patterns and the risk of dyslipidemia in Korean adults: a prospective cohort study based on the health Examinees (HEXA) study. J Acad Nutr Diet 121:1242-1257.e2. https://doi.org/10.1016/j.jand.2020.08.090

    Article  PubMed  Google Scholar 

  42. Lee J, Kim J (2018) Association between dietary pattern and incidence of cholesterolemia in korean adults: The Korean genome and epidemiology study. Nutrients 10:. https://doi.org/10.3390/nu10010053

  43. Park SJ, Kim MS, Choi SW, Lee HJ (2020) The relationship of dietary pattern and genetic risk score with the incidence dyslipidemia: 14-year follow-up cohort study. Nutrients 12:1–13. https://doi.org/10.3390/nu12123840

    Article  CAS  Google Scholar 

  44. Kayode OT, Bello JA, Oguntola JA et al (2023) The interplay between monosodium glutamate (MSG) consumption and metabolic disorders. Heliyon 9:e19675. https://doi.org/10.1016/j.heliyon.2023.e19675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hua S, Ma C, Zhang J et al (2018) Influence of APOA5 locus on the treatment efficacy of three statins: evidence from a randomized pilot study in Chinese subjects. Front Pharmacol 9:1–8. https://doi.org/10.3389/fphar.2018.00352

    Article  CAS  Google Scholar 

  46. Zhang L, He S, Li Z et al (2019) Apolipoprotein e polymorphisms contribute to statin response in Chinese ASCVD patients with dyslipidemia. Lipids Health Dis 18:1–10. https://doi.org/10.1186/s12944-019-1069-5

    Article  CAS  Google Scholar 

  47. Hu M, Mak VWL, Tomlinson B (2012) Polymorphisms in apolipoprotein e and apolipoprotein A-V do not influence the lipid response to rosuvastatin but are associated with baseline lipid levels in Chinese patients with hyperlipidemia. J Clin Lipidol 6:585–592. https://doi.org/10.1016/j.jacl.2012.02.005

    Article  PubMed  Google Scholar 

  48. Cai C, Wen Z, Li L (2021) The relationship between ApoE gene polymorphism and the efficacy of statins controlling hyperlipidemia. Am J Transl Res 13:6772–6777

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed fairly and equally, and each author reviewed the final manuscript.

Corresponding author

Correspondence to Farizky Martriano Humardani.

Ethics declarations

Ethical approval

Not Applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besin, V., Humardani, F.M., Yulianti, T. et al. The Apo gene's genetic variants: hidden role in Asian vascular risk. Neurogenetics (2024). https://doi.org/10.1007/s10048-024-00757-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10048-024-00757-9

Keywords

Navigation