Skip to main content
Log in

Gene–gene interaction network analysis indicates CNTN2 is a candidate gene for idiopathic generalized epilepsy

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Twin and family studies have established the genetic contribution to idiopathic generalized epilepsy (IGE). The genetic architecture of IGE is generally complex and heterogeneous, and the majority of the genetic burden in IGE remains unsolved. We hypothesize that gene–gene interactions contribute to the complex inheritance of IGE. CNTN2 (OMIM* 615,400) variants have been identified in cases with familial adult myoclonic epilepsy and other epilepsies. To explore the gene–gene interaction network in IGE, we took the CNTN2 gene as an example and investigated its co-occurrent genetic variants in IGE cases. We performed whole-exome sequencing in 114 unrelated IGE cases and 296 healthy controls. Variants were qualified with sequencing quality, minor allele frequency, in silico prediction, genetic phenotype, and recurrent case numbers. The STRING_TOP25 gene interaction network analysis was introduced with the bait gene CNTN2 (denoted as A). The gene–gene interaction pair mode was presumed to be A + c, A + d, A + e, with a leading gene A, or A + B + f, A + B + g, A + B + h, with a double-gene A + B, or other combinations. We compared the number of gene interaction pairs between the case and control groups. We identified three pairs in the case group, CNTN2 + PTPN18, CNTN2 + CNTN1 + ANK2 + ANK3 + SNTG2, and CNTN2 + PTPRZ1, while we did not discover any pairs in the control group. The number of gene interaction pairs in the case group was much more than in the control group (p = 0.021). Taking together the genetic bioinformatics, reported epilepsy cases, and statistical evidence in the study, we supposed CNTN2 as a candidate pathogenic gene for IGE. The gene interaction network analysis might help screen candidate genes for IGE or other complex genetic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

We state that the data is available for all readers.

References

  1. Hirsch E, French J, Scheffer IE et al (2022) ILAE definition of the idiopathic generalized epilepsy syndromes: position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia 63(6):1475–1499

    Article  PubMed  Google Scholar 

  2. Scheffer IE, Berkovic S, Capovilla G et al (2017) ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58(4):512–521

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jallon P, Latour P (2005) Epidemiology of idiopathic generalized epilepsies. Epilepsia 46(Suppl 9):10–14

    Article  PubMed  Google Scholar 

  4. Kovel CGFD, Trucks H, Helbig I et al (2010) Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain 33(1):23–32

  5. Healy L, Moran M, Singhal S et al (2018) Relapse after treatment withdrawal of antiepileptic drugs for juvenile absence epilepsy and juvenile myoclonic epilepsy. Seizure 59:116–122

    Article  PubMed  Google Scholar 

  6. Vadlamudi L, Milne RL, Lawrence K et al (2014) Genetics of epilepsy: the testimony of twins in the molecular era. Neurology 83(12):1042–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peljto AL, Barker-Cummings C, Vasoli VM et al (2014) Familial risk of epilepsy: a population-based study. Brain 137(3):795–805

    Article  PubMed  PubMed Central  Google Scholar 

  8. Weber YG, Lerche H (2008) Genetic mechanisms in idiopathic epilepsies. Dev Med Child Neurol 50(9):648–654

    Article  PubMed  Google Scholar 

  9. Prasad DK, Satyanarayana U, Munshi A (2013) Genetics of idiopathic generalized epilepsy: an overview. Neurol India 61(6):572–577

    Article  CAS  PubMed  Google Scholar 

  10. Sander T, Schulz H, Saar K et al (2000) Genome search for susceptibility loci of common idiopathic generalised epilepsies. Hum Mol Genet 9(10):1465–1472

    Article  CAS  PubMed  Google Scholar 

  11. Thakran S, Guin D, Singh P et al (2020) Genetic landscape of common epilepsies: advancing towards precision in treatment. Int J Mol Sci 21(20):7784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Greenberg DA, Stewart WL (2014) Remind me again what disease we are studying? A population genetics, genetic analysis, and real data perspective on why progress on identifying genetic influences on common epilepsies has been so slow. Prog Brain Res 213:199–221

    Article  PubMed  Google Scholar 

  13. Marini C, Scheffer IE, Crossland KM et al (2004) Genetic architecture of idiopathic generalized epilepsy: clinical genetic analysis of 55 multiplex families. Epilepsia 45(5):467–478

    Article  PubMed  Google Scholar 

  14. Myers KA, Johnstone DL, Dyment DA (2019) Epilepsy genetics: current knowledge, applications, and future directions. Clin Genet 95(1):95–111

    Article  CAS  PubMed  Google Scholar 

  15. Leu C, Stevelink R, Smith AW et al (2019) Polygenic burden in focal and generalized epilepsies. Brain 142(11):3473–3481

    Article  PubMed  PubMed Central  Google Scholar 

  16. Walsh R, Tadros R, Bezzina CR (2020) When genetic burden reaches threshold. Eur Heart J 41(39):3849–3855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Glasscock E, Qian J, Yoo JW et al (2007) Masking epilepsy by combining two epilepsy genes. Nat Neurosci 10(12):1554–1558

    Article  CAS  PubMed  Google Scholar 

  18. Consortium EK (2017) Project EPG Ultra-rare genetic variation in common epilepsies: a case-control sequencing study. Lancet Neurol 16(2):135–143

    Article  Google Scholar 

  19. Stogmann E, Reinthaler E, Eltawil S et al (2013) Autosomal recessive cortical myoclonic tremor and epilepsy: association with a mutation in the potassium channel associated gene CNTN2. Brain 136(4):1155–1160

    Article  PubMed  Google Scholar 

  20. Stogmann E, Zimprich A, Zimprich F (2013) Reply: autosomal recessive epilepsy associated with contactin 2 mutation is different from familial cortical tremor, myoclonus and epilepsy. Brain 136(10):e254

    Article  PubMed  Google Scholar 

  21. Chen W, Chen F, Shen Y et al (2021) Case report: a case of epileptic disorder associated with a novel CNTN2 frameshift variant in homozygosity due to maternal uniparental disomy. Front Genet 12:743833

    Article  PubMed  PubMed Central  Google Scholar 

  22. Abdulkareem AA, Zaman Q, Khan H et al (2023) Whole exome sequencing identified five novel variants in CNTN2, CARS2, ARSA, and CLCN4 leading to epilepsy in consanguineous families. Front Genet 14:1185065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chatterjee M, Del Campo M, Morrema THJ et al (2018) Contactin-2, a synaptic and axonal protein, is reduced in cerebrospinal fluid and brain tissue in Alzheimer’s disease. Alzheimers Res Ther 10(1):52

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang J, Qiao JD, Liu XR et al (2021) UNC13B variants associated with partial epilepsy with favourable outcome. Brain 144(10):3050–3060

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang J, Lin ZJ, Liu L et al (2017) Epilepsy-associated genes. Seizure 44:11–20

    Article  CAS  PubMed  Google Scholar 

  26. Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nykamp K, Anderson M, Powers M et al (2017) Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. Genet Med 19(10):1105–1117

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gesche J, Hjalgrim H, Rubboli G et al (2020) The clinical spectrum of familial and sporadic idiopathic generalized epilepsy. Epilepsy Res 165:106374

    Article  CAS  PubMed  Google Scholar 

  29. Lin ZJ, Li B, Lin PX et al (2023) Clinical application of trio-based whole-exome sequencing in idiopathic generalized epilepsy Seizure. https://doi.org/10.1016/j.seizure.2023.02.011 (in press)

  30. Helbig IMD (2015) Genetic causes of generalized epilepsies. Semin Neurol 35(3):288–292

    Article  MathSciNet  PubMed  Google Scholar 

  31. Collaborative E (2021) Sub-genic intolerance, ClinVar, and the epilepsies: a whole-exome sequencing study of 29,165 individuals. Am J Hum Genet 108:965–982

    Article  Google Scholar 

  32. Koko M, Motelow JE, Stanley KE et al (2022) Association of ultra-rare coding variants with genetic generalized epilepsy: a case-control whole exome sequencing study. Epilepsia 63(3):723–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heinzen EL, Depondt C, Cavalleri GL et al (2012) Exome sequencing followed by large-scale genotyping fails to identify single rare variants of large effect in idiopathic generalized epilepsy. Am J Hum Genet 91(2):293–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shao M, Yang Y, Guan J et al (2014) Choosing appropriate models for protein-protein interaction networks: a comparison study. Brief Bioinform 15(5):823–838

    Article  CAS  PubMed  Google Scholar 

  35. Bonetta L (2010) Protein-protein interactions: interactome under construction. Nature 468(7325):851–854

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Kuzmanov U, Emili A (2013) Protein-protein interaction networks: probing disease mechanisms using model systems. Genome Med 5(4):37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jin L, Wang W, Fang G (2014) Targeting protein-protein interaction by small molecules. Annu Rev Pharmacol Toxicol 54:435–456

    Article  CAS  PubMed  Google Scholar 

  38. Szklarczyk D, Kirsch R, Koutrouli M et al (2023) The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 51(D1):D638–D646

    Article  CAS  PubMed  Google Scholar 

  39. Mei S (2018) In silico enhancing M. tuberculosis protein interaction networks in STRING to predict drug-resistance pathways and pharmacological risks. J Proteome Res 17(5):1749-1760

  40. Biering SB, Sarnik SA, Wang E et al (2022) Genome-wide bidirectional CRISPR screens identify mucins as host factors modulating SARS-CoV-2 infection. Nat Genet 54(8):1078–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fukamauchi F, Aihara O, Wang YJ et al (2001) TAG-1-deficient mice have marked elevation of adenosine A1 receptors in the hippocampus. Biochem Biophys Res Commun 281(1):220–226

    Article  CAS  PubMed  Google Scholar 

  42. Pinatel D, Hivert B, Saint-Martin M et al (2017) The Kv1-associated molecules TAG-1 and Caspr2 are selectively targeted to the axon initial segment in hippocampal neurons. J Cell Sci 130:2209–2220

    CAS  PubMed  Google Scholar 

  43. Reid CA, Berkovic SF, Petrou S (2009) Mechanisms of human inherited epilepsies. Prog Neurobiol 87(1):41–57

    Article  CAS  PubMed  Google Scholar 

  44. Kearney JA, Yang Y, Beyer B et al (2006) Severe epilepsy resulting from genetic interaction between Scn2a and Kcnq2. Hum Mol Genet 15(6):1043–1048

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The Fujian Provincial Health Technology Project (grant number 2019-ZQN-94) and the Natural Science Foundation of Fujian Province (grant number 2020J011257) funded the study. The funders had no role in study design, data collection, data analysis, data interpretation, and the decision to prepare or publish the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Zhi-Jian Lin contributed to the conception and design of the study. Zhi-Jian Lin, Jun-Wei He, and Sheng-Yin Zhu performed material preparation, data collection, and data analysis. Zhi-Jian Lin wrote the first draft of the manuscript, and all authors commented on previous versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Peng-Xing Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, ZJ., He, JW., Zhu, SY. et al. Gene–gene interaction network analysis indicates CNTN2 is a candidate gene for idiopathic generalized epilepsy. Neurogenetics (2024). https://doi.org/10.1007/s10048-024-00748-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10048-024-00748-w

Keywords

Navigation