Skip to main content

First female with Allan-Herndon-Dudley syndrome and partial deletion of X-inactivation center

Abstract

Allan-Herndon-Dudley is an X-linked recessive syndrome caused by pathogenic variants in the SLC16A2 gene. Clinical manifestations are a consequence of impaired thyroid metabolism and aberrant transport of thyroid hormones to the brain. Carrier females are generally asymptomatic and may show subtle symptoms of the disease. We describe a female with a complete Allan-Herndon-Dudley phenotype, carrying a de novo 543-kb deletion of the X chromosome. The deletion encompasses exon 1 of the SLC16A2 gene and JPX and FTX genes; it is known that the latter two genes participate in the X-inactivation process upregulating XIST gene expression. Subsequent studies in the patient demonstrated the preferential expression of the X chromosome with the JPX and FTX deletion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. 1.

    Dumitrescu AM, Liao XH, Best TB et al (2004) A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet 74(1):168–175

    CAS  Article  Google Scholar 

  2. 2.

    Arjona FJ, de Vrieze E, Visser TJ et al (2011) Identification and functional characterization of zebrafish solute carrier Slc16a2 (Mct8) as a thyroid hormone membrane transporter. Endocrinology 152(12):5065–5073

    CAS  Article  Google Scholar 

  3. 3.

    Schwartz CE, Stevenson RE (2007) The MCT8 thyroid hormone transporter and Allan-Herndon-Dudley syndrome. Best Pract Res Clin Endocrinol Metab 21(2):307–321

    CAS  Article  Google Scholar 

  4. 4.

    Krude H, Biebermann H, Schuelke M et al (2020) Allan-Herndon-Dudley-syndrome: considerations about the brain phenotype with implications for treatment strategies. Exp Clin Endocrinol Diabetes 128(6–07):414–422

    CAS  PubMed  Google Scholar 

  5. 5.

    Gika AD, Siddiqui A, Hulse AJ et al (2010) White matter abnormalities and dystonic motor disorder associated with mutations in the SLC16A2 gene. Dev Med Child Neurol 52(5):475–482

    Article  Google Scholar 

  6. 6.

    Masnada S, Groenweg S, Saletti V et al (2019) Novel mutations in SLC16A2 associated with a less severe phenotype of MCT8 deficiency. Metab Brain Dis 34(6):1565–1575

    CAS  Article  Google Scholar 

  7. 7.

    Visser WE, Jansen J, Friesema EC et al (2009) Novel pathogenic mechanism suggested by ex vivo analysis of MCT8 (SLC16A2) mutations. Hum Mutat 30(1):29–38

    CAS  Article  Google Scholar 

  8. 8.

    Frints SG, Lenzner S, Bauters M et al (2008) MCT8 mutation analysis and identification of mthe first female with Allan-Herndon-Dudley syndrome due to loss of MCT8 expression. Eur J Hum Genet 16(9):1029–1037

    CAS  Article  Google Scholar 

  9. 9.

    Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L). Nature 190:372–3

    CAS  Article  Google Scholar 

  10. 10.

    Russell LB (1963) Mammalian X-chromosome action: inactivation limited in spread and region of origin. Science 140(3570):976–978

    CAS  Article  Google Scholar 

  11. 11.

    Brown CJ, Ballabio A, Rupert JL et al (1991) A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349(6304):38–44

    CAS  Article  Google Scholar 

  12. 12.

    Brockdorff N, Ashworth A, Kay GF et al (1991) Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature 351(6324):329–331

    CAS  Article  Google Scholar 

  13. 13.

    Jeon Y, Lee JT (2011) YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146(1):119–133

    CAS  Article  Google Scholar 

  14. 14.

    Tian D, Sun S, Lee JT (2010) The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 143:390–403

    CAS  Article  Google Scholar 

  15. 15.

    Yan F, Wang X, Zeng Y (2019) 3D genomic regulation of lncRNA and Xist in X chromosome. Semin Cell Dev Biol 90:174–180

    CAS  Article  Google Scholar 

  16. 16.

    Chao W, Huynh KD, Spencer RJ et al (2002) CTCF, a candidate trans-acting factor for X-inactivation choice. Science 295(5553):345–347

    CAS  Article  Google Scholar 

  17. 17.

    Sun S, Del Rosario BC, Szanto A et al (2013) Jpx RNA activates Xist by evicting CTCF. Cell 153(7):1537–1551

    CAS  Article  Google Scholar 

  18. 18.

    Chureau C, Chantalat S, Romito A et al (2010) Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Hum Mol Genet 20(4):705–718

    Article  Google Scholar 

  19. 19.

    Hosoi Y, Soma M, Shiura H et al (2018) Publisher Correction: Female mice lacking Ftx lncRNA exhibit impaired X-chromosome inactivation and a microphthalmia-like phenotype. Nat Commun 9(1):4618 (Erratum)

  20. 20.

    Furlan G, Gutierrez Hernandez N, Huret C et al (2018) The Ftx noncoding locus controls X chromosome inactivation independently of its RNA products. Mol Cell 70(3):462-472.e8

    CAS  Article  Google Scholar 

  21. 21.

    Jonkers I, Barakat TS, Achame EM et al (2009) RNF12 is an X-encoded dose-dependent activator of X chromosome inactivation. Cell 139(5):999–1011

    CAS  Article  Google Scholar 

  22. 22.

    Gontan C, Achame EM, Demmers J et al (2012) RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation. Nature 485(7398):386–390

    CAS  Article  Google Scholar 

  23. 23.

    Sado T, Hoki Y, Sasaki H (2005) Tsix silences Xist through modification of chromatin structure. Dev Cell 9:159–165

    CAS  Article  Google Scholar 

  24. 24.

    Barakat TS, Loos F, van Staveren S et al (2014) The trans-activator RNF12 and cis-acting elements effectuate X chromosome inactivation independent of X-pairing. Mol Cell 53(6):965–978

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Juan F. Quesada-Espinosa or Lucía Garzón-Lorenzo.

Ethics declarations

Ethics approval/consent to participate

Written informed consent was obtained in accordance with institutional requirements and the study fulfilled the principles of the Declaration of Helsinki.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1146 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quesada-Espinosa, J.F., Garzón-Lorenzo, L., Lezana-Rosales, J.M. et al. First female with Allan-Herndon-Dudley syndrome and partial deletion of X-inactivation center. Neurogenetics 22, 343–346 (2021). https://doi.org/10.1007/s10048-021-00660-7

Download citation

Keywords

  • Allan-Herndon-Dudley syndrome
  • SLC16A2
  • X chromosome inactivation
  • JPX
  • FTX