Skip to main content

Advertisement

Log in

Oligogenicity, C9orf72 expansion, and variant severity in ALS

  • Short Communication
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

“Oligogenic inheritance” is used to describe cases where more than one rare pathogenic variant is observed in the same individual. While multiple variants can alter disease presentation, the necessity of multiple variants to instigate pathogenesis has not been addressed in amyotrophic lateral sclerosis (ALS). We sequenced ALS-associated genes in C9orf72-expansion-positive and negative ALS patients, alongside unaffected controls, to test the importance of oligogenicity and variant deleteriousness in ALS. We found that all groups had similar numbers of rare variants, but that variant severity was significantly higher in C9orf72-negative ALS cases, suggesting sufficiency of C9orf72 expansion to cause ALS alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. van Blitterswijk M, van Es MA, Hennekam EA, Dooijes D, van Rheenen W, Medic J, Bourque PR, Schelhaas HJ, van der Kooi AJ, de Visser M, de Bakker PI, Veldink JH, van den Berg LH (2012) Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet 21(17):3776–3784. https://doi.org/10.1093/hmg/dds199

    Article  CAS  PubMed  Google Scholar 

  2. Chio A, Mazzini L, D'Alfonso S, Corrado L, Canosa A, Moglia C, Manera U, Bersano E, Brunetti M, Barberis M, Veldink JH, van den Berg LH, Pearce N, Sproviero W, McLaughlin R, Vajda A, Hardiman O, Rooney J, Mora G, Calvo A, Al-Chalabi A (2018) The multistep hypothesis of ALS revisited: the role of genetic mutations. Neurology 91(7):e635–e642. https://doi.org/10.1212/WNL.0000000000005996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cady J, Allred P, Bali T, Pestronk A, Goate A, Miller TM, Mitra RD, Ravits J, Harms MB, Baloh RH (2015) Amyotrophic lateral sclerosis onset is influenced by the burden of rare variants in known amyotrophic lateral sclerosis genes. Ann Neurol 77(1):100–113. https://doi.org/10.1002/ana.24306

    Article  CAS  PubMed  Google Scholar 

  4. Cooper-Knock J, Robins H, Niedermoser I, Wyles M, Heath PR, Higginbottom A, Walsh T, Kazoka M, Project Min EALSSC, Ince PG, Hautbergue GM, McDermott CJ, Kirby J, Shaw PJ (2017) Targeted genetic screen in amyotrophic lateral sclerosis reveals novel genetic variants with synergistic effect on clinical phenotype. Front Mol Neurosci 10:370. doi:https://doi.org/10.3389/fnmol.2017.00370

  5. Pang SY, Hsu JS, Teo KC, Li Y, Kung MHW, Cheah KSE, Chan D, Cheung KMC, Li M, Sham PC, Ho SL (2017) Burden of rare variants in ALS genes influences survival in familial and sporadic ALS. Neurobiol Aging 58(238):e239–238 e215. https://doi.org/10.1016/j.neurobiolaging.2017.06.007

    Article  CAS  Google Scholar 

  6. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW, Hernandez DG, Johnson JO, Mok K, Ryten M, Trabzuni D, Guerreiro RJ, Orrell RW, Neal J, Murray A, Pearson J, Jansen IE, Sondervan D, Seelaar H, Blake D, Young K, Halliwell N, Callister JB, Toulson G, Richardson A, Gerhard A, Snowden J, Mann D, Neary D, Nalls MA, Peuralinna T, Jansson L, Isoviita VM, Kaivorinne AL, Holtta-Vuori M, Ikonen E, Sulkava R, Benatar M, Wuu J, Chio A, Restagno G, Borghero G, Sabatelli M, Consortium I, Heckerman D, Rogaeva E, Zinman L, Rothstein JD, Sendtner M, Drepper C, Eichler EE, Alkan C, Abdullaev Z, Pack SD, Dutra A, Pak E, Hardy J, Singleton A, Williams NM, Heutink P, Pickering-Brown S, Morris HR, Tienari PJ, Traynor BJ (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72(2):257–268. https://doi.org/10.1016/j.neuron.2011.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung GY, Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, Knopman DS, Petersen RC, Miller BL, Dickson DW, Boylan KB, Graff-Radford NR, Rademakers R (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72(2):245–256. https://doi.org/10.1016/j.neuron.2011.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Murphy NA, Arthur KC, Tienari PJ, Houlden H, Chio A, Traynor BJ (2017) Age-related penetrance of the C9orf72 repeat expansion. Sci Rep 7(1):2116. https://doi.org/10.1038/s41598-017-02364-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morgan S, Shatunov A, Sproviero W, Jones AR, Shoai M, Hughes D, Al Khleifat A, Malaspina A, Morrison KE, Shaw PJ, Shaw CE, Sidle K, Orrell RW, Fratta P, Hardy J, Pittman A, Al-Chalabi A (2017) A comprehensive analysis of rare genetic variation in amyotrophic lateral sclerosis in the UK. Brain 140(6):1611–1618. https://doi.org/10.1093/brain/awx082

    Article  PubMed  PubMed Central  Google Scholar 

  10. Boyle EA, O'Roak BJ, Martin BK, Kumar A, Shendure J (2014) MIPgen: optimized modeling and design of molecular inversion probes for targeted resequencing. Bioinformatics 30(18):2670–2672. https://doi.org/10.1093/bioinformatics/btu353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22(3):568–576. https://doi.org/10.1101/gr.129684.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164. https://doi.org/10.1093/nar/gkq603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46(3):310–315. https://doi.org/10.1038/ng.2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, De Pristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, Genomes Project Analysis G (2011) The variant call format and VCFtools. Bioinformatics 27(15):2156–2158. https://doi.org/10.1093/bioinformatics/btr330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4:7. https://doi.org/10.1186/s13742-015-0047-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki MI, Moonshine AL, Natarajan P, Orozco L, Peloso GM, Poplin R, Rivas MA, Ruano-Rubio V, Rose SA, Ruderfer DM, Shakir K, Stenson PD, Stevens C, Thomas BP, Tiao G, Tusie-Luna MT, Weisburd B, Won HH, Yu D, Altshuler DM, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman CM, Kathiresan S, Laakso M, McCarroll S, McCarthy MI, McGovern D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM, Sklar P, Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JG, Daly MJ, MacArthur DG, Exome Aggregation C (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536(7616):285–291. https://doi.org/10.1038/nature19057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lattante S, Ciura S, Rouleau GA, Kabashi E (2015) Defining the genetic connection linking amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD). Trends Genet 31(5):263–273. https://doi.org/10.1016/j.tig.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  20. Taylor JP, Brown RH Jr, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539(7628):197–206. https://doi.org/10.1038/nature20413

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank the participants of the study. We thank Michael Strong and Angela Genge for sample contribution. We thank Vessela Zaharieva and Cathy Mirarchi for their assistance in clinical coordination. We thank Cynthia Bourassa, Fulya Akçimen, Qin He, and Cal Liao for their assistance.

Funding

Jay Ross has received a doctoral student fellowship from the ALS Society of Canada and a Canadian Institutes of Health Research Frederick Banting & Charles Best Canada Graduate Scholarship (FRN 159279). We thank the ALS Society of Canada, the Canadian Institutes of Health Research, and Brain Canada for research funding.

Author information

Authors and Affiliations

Authors

Contributions

JPR: Experimental design, experimental procedures, data analysis, statistical analysis, writing manuscript, editing manuscript.

CSL: Experimental design, experimental procedures, editing manuscript.

SBL: Experimental procedures.

DS: Data analysis.

ADL: Data analysis.

WC: Collection of genetic samples, editing manuscript.

ND: Collection of genetic samples, editing manuscript.

PAD: Experimental design, writing manuscript, editing manuscript.

GAR: Experimental design, collection of genetic samples, writing manuscript, editing manuscript.

Corresponding author

Correspondence to Guy A. Rouleau.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ross, J.P., Leblond, C.S., Laurent, S.B. et al. Oligogenicity, C9orf72 expansion, and variant severity in ALS. Neurogenetics 21, 227–242 (2020). https://doi.org/10.1007/s10048-020-00612-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-020-00612-7

Keywords

Navigation