Skip to main content

Advertisement

Log in

A novel cysteine-sparing G73A mutation of NOTCH3 in a Chinese CADASIL family

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common monogenic disease leading to stroke and vascular dementia. CADASIL is an inherited small blood vessel disease caused by mutations in the gene encoding the neurogenic locus notch homolog protein 3 (NOTCH3). NOTCH3 is large type I membrane receptor mainly expressed in vascular smooth muscle cells and pericytes. Most identified mutations result in insert or deletion of a cysteine residue within the EGF-like repeats. To date, some cases with a cysteine-sparing mutant have been described. Genetic analysis revealed a novel mutation in NOTCH3 in a CADASIL family. Molecular analysis revealed its potential pathogenic mechanism in causing CADASIL. In this paper, we present a Chinese family with a novel cysteine-sparing mutation in exon 3 (c.218G>C, p.G73A) of the NOTCH3 gene. Family carriers of the same mutation presented with symptoms and imaging abnormalities characteristic of CADASIL. The location of glycine 73 in between C5-C6 disulfide bond of EGF-like domain 1 shows high conservation from humans to zebra fish. It has previously been suggested that the aggregate-prone property of mutant NOTCH3 contributes to a cytotoxic effect in the pathogenic mechanism underlying CADASIL. Here, we investigated the pathogenic mechanism of the new mutation in vitro using HEK293 cells transfected with either a wild-type (WT) or c.218G>C (p.G73A) NOTCH3ECD plasmids, and we found p.G73A NOTCH3ECD was more prone to form aggregation and resistant to degradation. Moreover, the p.G73A NOTCH3ECD compromised cell viability by promoting apoptosis. Two known CADASIL mutants R133C and R75P showed similar results with G73A mutants. Our study here identified G73A as a new mutation in NOTCH3 to cause CADASIL and revealed that the G73A mutation and two known mutants R75P and R133C decreased NOTCH3 protein turnover and induced cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA :

analysis of variance

CADASIL :

cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy

CCK8 :

Cell Counting Kit-8

CHD :

coronary heart disease

CHX :

chlorhexidine

DAPI :

4′,6′-diamino-2-phenylindole

DM :

diabetes mellitus

DSL :

Delta/Serrate/Lag-2

ECD :

extracellular domain

ECM :

extracellular matrix

EGF-like repeats :

epidermal growth factor-like repeats

ER :

endoplasmic reticulum

FCM :

flow cytometry

FITC :

fluorescein isothiocyanate

FLAIR:

fluid-attenuated inversion recovery magnetic resonance imaging

GOM :

granular osmiophilic material

HAMA:

Hamilton Anxiety Scale

HEK293 :

human embryonic kidney 293 cells

ICD :

intracellular domain

IGT :

impaired glucose tolerance

MRI :

magnetic resonance imaging

MMSE :

mini-mental state examination

NOTCH3 :

neurogenic locus notch homolog protein 3

PBS :

phosphate-buffered saline

PI :

propidium iodide

SWI :

susceptibility weighted imaging

UPR :

unfolded protein response

VSMCs :

vascular smooth muscle cells

MH :

T2-weighted white matter hyperintensity

WT :

wild type

References

  1. Pantoni L (2010) Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 9(7):689–701

    Article  Google Scholar 

  2. Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG (2009) Cadasil. Lancet Neurol. 8(7):643–653

    Article  Google Scholar 

  3. Takahashi K, Adachi K, Yoshizaki K, Kunimoto S, Kalaria RN, Watanabe A (2010) Mutations in NOTCH3 cause the formation and retention of aggregates in the endoplasmic reticulum, leading to impaired cell proliferation. Human molecular genetics. 19(1):79–89

    Article  CAS  Google Scholar 

  4. Domenga V, Fardoux P, Lacombe P, Monet M, Maciazek J, Krebs LT, Klonjkowski B, Berrou E, Mericskay M, Li Z, Tournier-Lasserve E, Gridley T, Joutel A (2004) Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev. 18(22):2730–2735

    Article  CAS  Google Scholar 

  5. Cognat E, Baron-Menguy C, Domenga-Denier V, Cleophax S, Fouillade C, Monet-Lepretre M et al (2014) Archetypal Arg169Cys mutation in NOTCH3 does not drive the pathogenesis in cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy via a loss-of-function mechanism. Stroke. 45(3):842–849

    Article  CAS  Google Scholar 

  6. Ge W, Kuang H, Wei B, Bo L, Xu Z, Xu X, Geng D, Sun M (2014) A novel cysteine-sparing NOTCH3 mutation in a Chinese family with CADASIL. PLoS One. 9(8):e104533

    Article  Google Scholar 

  7. Louvi A, Artavanis-Tsakonas S (2012) Notch and disease: a growing field. Semin Cell Dev Biol. 23(4):473–480

    Article  CAS  Google Scholar 

  8. Fortini ME, Bilder D (2009) Endocytic regulation of Notch signaling. Curr Opin Genet Dev. 19(4):323–328

    Article  CAS  Google Scholar 

  9. Kopan R (2012) Notch signaling. Cold Spring Harb Perspect Biol 4(10)

    Article  Google Scholar 

  10. Meng H, Zhang X, Yu G, Lee SJ, Chen YE, Prudovsky I, Wang MM (2012) Biochemical characterization and cellular effects of CADASIL mutants of NOTCH3. PLoS One. 7(9):e44964

    Article  CAS  Google Scholar 

  11. Joutel A, Vahedi K, Corpechot C, Troesch A, Chabriat H, Vayssiere C et al (1997) Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet. 350(9090):1511–1515

    Article  CAS  Google Scholar 

  12. Monet M, Domenga V, Lemaire B, Souilhol C, Langa F, Babinet C, Gridley T, Tournier-Lasserve E, Cohen-Tannoudji M, Joutel A (2007) The archetypal R90C CADASIL-NOTCH3 mutation retains NOTCH3 function in vivo. Human molecular genetics. 16(8):982–992

    Article  CAS  Google Scholar 

  13. Kitamoto T, Takahashi K, Takimoto H, Tomizuka K, Hayasaka M, Tabira T, Hanaoka K (2005) Functional redundancy of the Notch gene family during mouse embryogenesis: analysis of Notch gene expression in Notch3-deficient mice. Biochem Biophys Res Commun. 331(4):1154–1162

    Article  CAS  Google Scholar 

  14. Donahue CP, Kosik KS (2004) Distribution pattern of Notch3 mutations suggests a gain-of-function mechanism for CADASIL. Genomics. 83(1):59–65

    Article  CAS  Google Scholar 

  15. Monet-Lepretre M, Haddad I, Baron-Menguy C, Fouillot-Panchal M, Riani M, Domenga-Denier V et al (2013) Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL. Brain : a journal of neurology. 136(Pt 6):1830–1845

    Article  Google Scholar 

  16. Rutten JW, Boon EM, Liem MK, Dauwerse JG, Pont MJ, Vollebregt E, Maat-Kievit AJ, Ginjaar HB, Lakeman P, van Duinen S, Terwindt GM, Lesnik Oberstein SA (2013) Hypomorphic NOTCH3 alleles do not cause CADASIL in humans. Hum Mutat. 34(11):1486–1489

    Article  CAS  Google Scholar 

  17. Joutel A (2011) Pathogenesis of CADASIL: transgenic and knock-out mice to probe function and dysfunction of the mutated gene, Notch3, in the cerebrovasculature. Bioessays. 33(1):73–80

    Article  CAS  Google Scholar 

  18. Duering M, Karpinska A, Rosner S, Hopfner F, Zechmeister M, Peters N, Kremmer E, Haffner C, Giese A, Dichgans M, Opherk C (2011) Co-aggregate formation of CADASIL-mutant NOTCH3: a single-particle analysis. Human molecular genetics. 20(16):3256–3265

    Article  CAS  Google Scholar 

  19. Opherk C, Duering M, Peters N, Karpinska A, Rosner S, Schneider E, Bader B, Giese A, Dichgans M (2009) CADASIL mutations enhance spontaneous multimerization of NOTCH3. Human molecular genetics. 18(15):2761–2767

    Article  CAS  Google Scholar 

  20. Ihalainen S, Soliymani R, Iivanainen E, Mykkanen K, Sainio A, Poyhonen M et al (2007) Proteome analysis of cultivated vascular smooth muscle cells from a CADASIL patient. Mol Med. 13(5-6):305–314

    Article  CAS  Google Scholar 

  21. Muino E, Gallego-Fabrega C, Cullell N, Carrera C, Torres N, Krupinski J et al (2017) Systematic review of cysteine-sparing NOTCH3 missense mutations in patients with clinical suspicion of CADASIL. International journal of molecular sciences 18(9)

    Article  Google Scholar 

  22. Vlachakis D, Tsaniras SC, Ioannidou K, Baumann M, Kossida S (2014) A series of NOTCH3 mutations in CADASIL; insights from 3D molecular modelling and evolutionary analyses. J Mol Biochem. 3:97–105

    CAS  Google Scholar 

  23. Wollenweber FA, Hanecker P, Bayer-Karpinska A, Malik R, Bazner H, Moreton F et al (2015) Cysteine-sparing CADASIL mutations in NOTCH3 show proaggregatory properties in vitro. Stroke. 46(3):786–792

    Article  CAS  Google Scholar 

  24. Zhu Y, Wang J, Wu Y, Wang G, Hu B (2015) Two novel mutations in NOTCH3 gene causes cerebral autosomal dominant arteriopathy with subcritical infarct and leucoencephalopathy in two Chinese families. Int J Clin Exp Pathol. 8(2):1321–1327

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Z, Yuan Y, Zhang W, Lv H, Hong D, Chen B, Liu Y, Luan X, Xie S, Wu S (2011) NOTCH3 mutations and clinical features in 33 mainland Chinese families with CADASIL. Journal of neurology, neurosurgery, and psychiatry. 82(5):534–539

    Article  Google Scholar 

  26. Chen S, Ni W, Yin XZ, Liu HQ, Lu C, Zheng QJ, Zhao GX, Xu YF, Wu L, Zhang L, Wang N, Li HF, Wu ZY (2017) Clinical features and mutation spectrum in Chinese patients with CADASIL: a multicenter retrospective study. CNS Neurosci Ther. 23(9):707–716

    Article  CAS  Google Scholar 

  27. Joutel A, Haddad I, Ratelade J, Nelson MT (2016) Perturbations of the cerebrovascular matrisome: a convergent mechanism in small vessel disease of the brain? J Cereb Blood Flow Metab. 36(1):143–157

    Article  CAS  Google Scholar 

  28. Yamamoto Y, Craggs LJ, Watanabe A, Booth T, Attems J, Low RW, Oakley AE, Kalaria RN (2013) Brain microvascular accumulation and distribution of the NOTCH3 ectodomain and granular osmiophilic material in CADASIL. J Neuropathol Exp Neurol. 72(5):416–431

    Article  CAS  Google Scholar 

  29. Joutel A, Andreux F, Gaulis S, Domenga V, Cecillon M, Battail N, Piga N, Chapon F, Godfrain C, Tournier-Lasserve E (2000) The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. The Journal of clinical investigation. 105(5):597–605

    Article  CAS  Google Scholar 

  30. Ghezali L, Capone C, Baron-Menguy C, Ratelade J, Christensen S, Ostergaard Pedersen L et al (2018) Notch3(ECD) immunotherapy improves cerebrovascular responses in CADASIL mice. Ann Neurol.

  31. Desmond DW, Moroney JT, Lynch T, Chan S, Chin SS, Mohr JP (1999) The natural history of CADASIL: a pooled analysis of previously published cases. Stroke. 30(6):1230–1233

    Article  CAS  Google Scholar 

  32. Chabriat H, Tournier-Lasserve E, Vahedi K, Leys D, Joutel A, Nibbio A, Escaillas JP, Iba-Zizen MT, Bracard S, Tehindrazanarivelo A (1995) Autosomal dominant migraine with MRI white-matter abnormalities mapping to the CADASIL locus. Neurology. 45(6):1086–1091

    Article  CAS  Google Scholar 

  33. Vyshka G, Kruja J (2013) Clinical variability of the cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy phenotype in two siblings of a large family showing the same mutation. Int Med Case Rep J. 6:59–63

    Article  Google Scholar 

  34. Tan ZX, Li FF, Qu YY, Liu J, Liu GR, Zhou J, Zhu YL, Liu SL (2012) Identification of a known mutation in Notch 3 in familiar CADASIL in China. PLoS One. 7(5):e36590

    Article  CAS  Google Scholar 

  35. Dziewulska D, Sulejczak D, Wezyk M (2017) What factors determine phenotype of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL)? Considerations in the context of a novel pathogenic R110C mutation in the NOTCH3 gene. Folia Neuropathol. 55(4):295–300

    Article  Google Scholar 

  36. Monet-Lepretre M, Bardot B, Lemaire B, Domenga V, Godin O, Dichgans M et al (2009) Distinct phenotypic and functional features of CADASIL mutations in the Notch3 ligand binding domain. Brain : a journal of neurology. 132(Pt 6):1601–1612

    Article  Google Scholar 

  37. Adib-Samii P, Brice G, Martin RJ, Markus HS (2010) Clinical spectrum of CADASIL and the effect of cardiovascular risk factors on phenotype: study in 200 consecutively recruited individuals. Stroke. 41(4):630–634

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Weihong Song for his instructive suggestions.

Availability of data and materials

All data generated or analyzed during this study are included in this published article (and as supplement original data.pdf).

Funding

This study was supported by grants from NSFC (81771155) to Xiulian Sun and grants from Shandong Key Research Project (2018GSF118104) to Hongchun Wang.

Author information

Authors and Affiliations

Authors

Contributions

L. H. and X. S. designed the experiments and wrote the manuscript. W. L. collected the clinical data. L. H. performed the molecular studies. Y. L., C. S., P. W., and H. W. helped in preparing the materials. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiulian Sun.

Ethics declarations

Ethical statements

Study protocols were approved by the Medical Ethical Committee of Qingdao Municipal Hospital (2016-002). All persons gave their informed consent prior to their inclusion in the study.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Li, W., Li, Y. et al. A novel cysteine-sparing G73A mutation of NOTCH3 in a Chinese CADASIL family. Neurogenetics 21, 39–49 (2020). https://doi.org/10.1007/s10048-019-00592-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-019-00592-3

Keywords

Navigation