Skip to main content
Log in

Association of ATXN2 intermediate-length CAG repeats with amyotrophic lateral sclerosis correlates with the distributions of normal CAG repeat alleles among individual ethnic populations

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Intermediate-length CAG repeats in ATXN2 have been widely shown to be a risk factor for sporadic amyotrophic lateral sclerosis (SALS). To evaluate the association of ATXN2 intermediate-length CAG repeat alleles with an increased risk of SALS, we investigated distributions of CAG repeat alleles in 394 patients with SALS and 490 control individuals in the Japanese population. In the intermediate-length repeat units of 29 or more, we identified one SALS patient with 31 repeat units and two control individuals with 30 repeat units. Thus, no significant differences in the carrier frequency of intermediate-length CAG repeat alleles were detected between patients with SALS and control individuals. When we investigated the distribution of “large normal alleles” defined as ATXN2 CAG repeats ranging from 24 up to 33 in the Japanese population compared with those in other populations in previous studies, the frequency of large normal alleles was significantly higher in the European and North American series than in the Japanese series. Moreover, these frequencies in the Turkish, Chinese, Korean, and Brazilian (Latin American) series were also higher than that in the Japanese series. These results raise the possibility that the frequencies of large normal alleles in individual populations underlie the frequencies of ALS risk alleles in the corresponding populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Taylor JP, Brown RH Jr, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539(7628):197–206. https://doi.org/10.1038/nature20413

    Article  PubMed  PubMed Central  Google Scholar 

  2. White MA, Sreedharan J (2016) Amyotrophic lateral sclerosis: recent genetic highlights. Curr Opin Neurol 29(5):557–564. https://doi.org/10.1097/WCO.0000000000000367

    Article  CAS  PubMed  Google Scholar 

  3. Leblond CS, Kaneb HM, Dion PA, Rouleau GA (2014) Dissection of genetic factors associated with amyotrophic lateral sclerosis. Exp Neurol 262 Pt B:91–101. https://doi.org/10.1016/j.expneurol.2014.04.013

    Article  CAS  PubMed  Google Scholar 

  4. Naruse H, Ishiura H, Mitsui J, Date H, Takahashi Y, Matsukawa T, Tanaka M, Ishii A, Tamaoka A, Hokkoku K, Sonoo M, Segawa M, Ugawa Y, Doi K, Yoshimura J, Morishita S, Goto J, Tsuji S (2018) Molecular epidemiological study of familial amyotrophic lateral sclerosis in Japanese population by whole-exome sequencing and identification of novel HNRNPA1 mutation. Neurobiol Aging 61:255 e259–255 e216. https://doi.org/10.1016/j.neurobiolaging.2017.08.030

    Article  CAS  Google Scholar 

  5. Naruse H, Ishiura H, Mitsui J, Takahashi Y, Matsukawa T, Tanaka M, Doi K, Yoshimura J, Morishita S, Goto J, Toda T, Tsuji S (2018) Burden of rare variants in causative genes for amyotrophic lateral sclerosis (ALS) accelerates age at onset of ALS. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2018-318568

  6. Takahashi Y, Seki N, Ishiura H, Mitsui J, Matsukawa T, Kishino A, Onodera O, Aoki M, Shimozawa N, Murayama S, Itoyama Y, Suzuki Y, Sobue G, Nishizawa M, Goto J, Tsuji S (2008) Development of a high-throughput microarray-based resequencing system for neurological disorders and its application to molecular genetics of amyotrophic lateral sclerosis. Arch Neurol 65(10):1326–1332. https://doi.org/10.1001/archneur.65.10.1326

    Article  PubMed  Google Scholar 

  7. Takahashi Y, Fukuda Y, Yoshimura J, Toyoda A, Kurppa K, Moritoyo H, Belzil VV, Dion PA, Higasa K, Doi K, Ishiura H, Mitsui J, Date H, Ahsan B, Matsukawa T, Ichikawa Y, Moritoyo T, Ikoma M, Hashimoto T, Kimura F, Murayama S, Onodera O, Nishizawa M, Yoshida M, Atsuta N, Sobue G, JaCals FJA, Williams KL, Blair IP, Nicholson GA, Gonzalez-Perez P, Brown RH Jr, Nomoto M, Elenius K, Rouleau GA, Fujiyama A, Morishita S, Goto J, Tsuji S (2013) ERBB4 mutations that disrupt the neuregulin-ErbB4 pathway cause amyotrophic lateral sclerosis type 19. Am J Hum Genet 93(5):900–905. https://doi.org/10.1016/j.ajhg.2013.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Naruse H, Iwata A, Takahashi Y, Ichihara K, Kamei S, Yamatoku M, Hirayama T, Suzuki N, Aoki M, Miyagawa T, Shimizu J, Tsuji S, Goto J (2013) Familial amyotrophic lateral sclerosis with novel A4D SOD1 mutation with late age at onset and rapid progressive course. Neurol Clin Neurosci 1(1):45–47. https://doi.org/10.1002/ncn3.8

    Article  CAS  Google Scholar 

  9. Segawa M, Hoshi A, Naruse H, Kuroda M, Bujo H, Ugawa Y (2015) A patient with familial amyotrophic lateral sclerosis associated with a new valosin-containing protein (VCP) gene mutation. Rinsho Shinkeigaku 55(12):914–920. https://doi.org/10.5692/clinicalneurol.cn-000765

    Article  PubMed  Google Scholar 

  10. Ishiura H, Takahashi Y, Mitsui J, Yoshida S, Kihira T, Kokubo Y, Kuzuhara S, Ranum LP, Tamaoki T, Ichikawa Y, Date H, Goto J, Tsuji S (2012) C9ORF72 repeat expansion in amyotrophic lateral sclerosis in the Kii peninsula of Japan. Arch Neurol 69(9):1154–1158. https://doi.org/10.1001/archneurol.2012.1219

    Article  PubMed  Google Scholar 

  11. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW, Hernandez DG, Johnson JO, Mok K, Ryten M, Trabzuni D, Guerreiro RJ, Orrell RW, Neal J, Murray A, Pearson J, Jansen IE, Sondervan D, Seelaar H, Blake D, Young K, Halliwell N, Callister JB, Toulson G, Richardson A, Gerhard A, Snowden J, Mann D, Neary D, Nalls MA, Peuralinna T, Jansson L, Isoviita VM, Kaivorinne AL, Holtta-Vuori M, Ikonen E, Sulkava R, Benatar M, Wuu J, Chio A, Restagno G, Borghero G, Sabatelli M, Consortium I, Heckerman D, Rogaeva E, Zinman L, Rothstein JD, Sendtner M, Drepper C, Eichler EE, Alkan C, Abdullaev Z, Pack SD, Dutra A, Pak E, Hardy J, Singleton A, Williams NM, Heutink P, Pickering-Brown S, Morris HR, Tienari PJ, Traynor BJ (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72(2):257–268. https://doi.org/10.1016/j.neuron.2011.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Renton AE, Chio A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17(1):17–23. https://doi.org/10.1038/nn.3584

    Article  CAS  PubMed  Google Scholar 

  13. Deng M, Wei L, Zuo X, Tian Y, Xie F, Hu P, Zhu C, Yu F, Meng Y, Wang H, Zhang F, Ma H, Ye R, Cheng H, Du J, Dong W, Zhou S, Wang C, Wang Y, Wang J, Chen X, Sun Z, Zhou N, Jiang Y, Liu X, Li X, Zhang N, Liu N, Guan Y, Han Y, Han Y, Lv X, Fu Y, Yu H, Xi C, Xie D, Zhao Q, Xie P, Wang X, Zhang Z, Shen L, Cui Y, Yin X, Cheng H, Liang B, Zheng X, Lee TM, Chen G, Zhou F, Veldink JH, Robberecht W, Landers JE, Andersen PM, Al-Chalabi A, Shaw C, Liu C, Tang B, Xiao S, Robertson J, Zhang F, van den Berg LH, Sun L, Liu J, Yang S, Ju X, Wang K, Zhang X (2013) Genome-wide association analyses in Han Chinese identify two new susceptibility loci for amyotrophic lateral sclerosis. Nat Genet 45(6):697–700. https://doi.org/10.1038/ng.2627

    Article  CAS  PubMed  Google Scholar 

  14. Iida A, Takahashi A, Kubo M, Saito S, Hosono N, Ohnishi Y, Kiyotani K, Mushiroda T, Nakajima M, Ozaki K, Tanaka T, Tsunoda T, Oshima S, Sano M, Kamei T, Tokuda T, Aoki M, Hasegawa K, Mizoguchi K, Morita M, Takahashi Y, Katsuno M, Atsuta N, Watanabe H, Tanaka F, Kaji R, Nakano I, Kamatani N, Tsuji S, Sobue G, Nakamura Y, Ikegawa S (2011) A functional variant in ZNF512B is associated with susceptibility to amyotrophic lateral sclerosis in Japanese. Hum Mol Genet 20(18):3684–3692. https://doi.org/10.1093/hmg/ddr268

    Article  CAS  PubMed  Google Scholar 

  15. Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, Armakola M, Geser F, Greene R, Lu MM, Padmanabhan A, Clay-Falcone D, McCluskey L, Elman L, Juhr D, Gruber PJ, Rub U, Auburger G, Trojanowski JQ, Lee VM, Van Deerlin VM, Bonini NM, Gitler AD (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466(7310):1069–1075. https://doi.org/10.1038/nature09320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sproviero W, Shatunov A, Stahl D, Shoai M, van Rheenen W, Jones AR, Al-Sarraj S, Andersen PM, Bonini NM, Conforti FL, Van Damme P, Daoud H, Del Mar Amador M, Fogh I, Forzan M, Gaastra B, Gellera C, Gitler AD, Hardy J, Fratta P, La Bella V, Le Ber I, Van Langenhove T, Lattante S, Lee YC, Malaspina A, Meininger V, Millecamps S, Orrell R, Rademakers R, Robberecht W, Rouleau G, Ross OA, Salachas F, Sidle K, Smith BN, Soong BW, Soraru G, Stevanin G, Kabashi E, Troakes C, van Broeckhoven C, Veldink JH, van den Berg LH, Shaw CE, Powell JF, Al-Chalabi A (2017) ATXN2 trinucleotide repeat length correlates with risk of ALS. Neurobiol Aging 51:178 e171–178 e179. https://doi.org/10.1016/j.neurobiolaging.2016.11.010

    Article  CAS  Google Scholar 

  17. Kim YE, Oh KW, Noh MY, Park J, Kim HJ, Park JE, Ki CS, Kim SH (2018) Analysis of ATXN2 trinucleotide repeats in Korean patients with amyotrophic lateral sclerosis. Neurobiol Aging 67:201 e205–201 e208. https://doi.org/10.1016/j.neurobiolaging.2018.03.019

    Article  CAS  Google Scholar 

  18. Tavares de Andrade HM, Cintra VP, de Albuquerque M, Piccinin CC, Bonadia LC, Duarte Couteiro RE, Sabino de Oliveira D, Claudino R, Magno Goncalves MV, Dourado MET Jr, de Souza LC, Teixeira AL, de Godoy Rousseff Prado L, Tumas V, Bulle Oliveira AS, Nucci A, Lopes-Cendes I, Marques W Jr, Franca MC Jr (2018) Intermediate-length CAG repeat in ATXN2 is associated with increased risk for amyotrophic lateral sclerosis in Brazilian patients. Neurobiol Aging 69:292.e15–292.e18. https://doi.org/10.1016/j.neurobiolaging.2018.04.020

    Article  CAS  Google Scholar 

  19. Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, Pearlman S, Starkman S, Orozco-Diaz G, Lunkes A, DeJong P, Rouleau GA, Auburger G, Korenberg JR, Figueroa C, Sahba S (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 14(3):269–276. https://doi.org/10.1038/ng1196-269

    Article  CAS  PubMed  Google Scholar 

  20. Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, Wakisaka A, Tashiro K, Ishida Y, Ikeuchi T, Koide R, Saito M, Sato A, Tanaka T, Hanyu S, Takiyama Y, Nishizawa M, Shimizu N, Nomura Y, Segawa M, Iwabuchi K, Eguchi I, Tanaka H, Takahashi H, Tsuji S (1996) Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 14(3):277–284. https://doi.org/10.1038/ng1196-277

    Article  CAS  PubMed  Google Scholar 

  21. Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, Weber C, Mandel JL, Cancel G, Abbas N, Durr A, Didierjean O, Stevanin G, Agid Y, Brice A (1996) Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 14(3):285–291. https://doi.org/10.1038/ng1196-285

    Article  CAS  PubMed  Google Scholar 

  22. Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1(5):293–299

    Article  CAS  PubMed  Google Scholar 

  23. Neuenschwander AG, Thai KK, Figueroa KP, Pulst SM (2014) Amyotrophic lateral sclerosis risk for spinocerebellar ataxia type 2 ATXN2 CAG repeat alleles: a meta-analysis. JAMA Neurol 71(12):1529–1534. https://doi.org/10.1001/jamaneurol.2014.2082

    Article  PubMed  PubMed Central  Google Scholar 

  24. Conforti FL, Spataro R, Sproviero W, Mazzei R, Cavalcanti F, Condino F, Simone IL, Logroscino G, Patitucci A, Magariello A, Muglia M, Rodolico C, Valentino P, Bono F, Colletti T, Monsurro MR, Gambardella A, La Bella V (2012) Ataxin-1 and ataxin-2 intermediate-length PolyQ expansions in amyotrophic lateral sclerosis. Neurology 79(24):2315–2320. https://doi.org/10.1212/WNL.0b013e318278b618

    Article  CAS  PubMed  Google Scholar 

  25. Corrado L, Mazzini L, Oggioni GD, Luciano B, Godi M, Brusco A, D’Alfonso S (2011) ATXN-2 CAG repeat expansions are interrupted in ALS patients. Hum Genet 130(4):575–580. https://doi.org/10.1007/s00439-011-1000-2

    Article  CAS  PubMed  Google Scholar 

  26. Daoud H, Belzil V, Martins S, Sabbagh M, Provencher P, Lacomblez L, Meininger V, Camu W, Dupre N, Dion PA, Rouleau GA (2011) Association of long ATXN2 CAG repeat sizes with increased risk of amyotrophic lateral sclerosis. Arch Neurol 68(6):739–742. https://doi.org/10.1001/archneurol.2011.111

    Article  PubMed  Google Scholar 

  27. Gellera C, Ticozzi N, Pensato V, Nanetti L, Castucci A, Castellotti B, Lauria G, Taroni F, Silani V, Mariotti C (2012) ATAXIN2 CAG-repeat length in Italian patients with amyotrophic lateral sclerosis: risk factor or variant phenotype? Implication for genetic testing and counseling. Neurobiol Aging 33(8):1847.e1815–1847.e1821. https://doi.org/10.1016/j.neurobiolaging.2012.02.004

    Article  CAS  Google Scholar 

  28. Gispert S, Kurz A, Waibel S, Bauer P, Liepelt I, Geisen C, Gitler AD, Becker T, Weber M, Berg D, Andersen PM, Kruger R, Riess O, Ludolph AC, Auburger G (2012) The modulation of amyotrophic lateral sclerosis risk by ataxin-2 intermediate polyglutamine expansions is a specific effect. Neurobiol Dis 45(1):356–361. https://doi.org/10.1016/j.nbd.2011.08.021

    Article  CAS  PubMed  Google Scholar 

  29. Lattante S, Millecamps S, Stevanin G, Rivaud-Pechoux S, Moigneu C, Camuzat A, Da Barroca S, Mundwiller E, Couarch P, Salachas F, Hannequin D, Meininger V, Pasquier F, Seilhean D, Couratier P, Danel-Brunaud V, Bonnet AM, Tranchant C, LeGuern E, Brice A, Le Ber I, Kabashi E (2014) Contribution of ATXN2 intermediary polyQ expansions in a spectrum of neurodegenerative disorders. Neurology 83(11):990–995. https://doi.org/10.1212/wnl.0000000000000778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee T, Li YR, Ingre C, Weber M, Grehl T, Gredal O, de Carvalho M, Meyer T, Tysnes OB, Auburger G, Gispert S, Bonini NM, Andersen PM, Gitler AD (2011) Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients. Hum Mol Genet 20(9):1697–1700. https://doi.org/10.1093/hmg/ddr045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ross OA, Rutherford NJ, Baker M, Soto-Ortolaza AI, Carrasquillo MM, DeJesus-Hernandez M, Adamson J, Li M, Volkening K, Finger E, Seeley WW, Hatanpaa KJ, Lomen-Hoerth C, Kertesz A, Bigio EH, Lippa C, Woodruff BK, Knopman DS, White CL 3rd, Van Gerpen JA, Meschia JF, Mackenzie IR, Boylan K, Boeve BF, Miller BL, Strong MJ, Uitti RJ, Younkin SG, Graff-Radford NR, Petersen RC, Wszolek ZK, Dickson DW, Rademakers R (2011) Ataxin-2 repeat-length variation and neurodegeneration. Hum Mol Genet 20(16):3207–3212. https://doi.org/10.1093/hmg/ddr227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Soraru G, Clementi M, Forzan M, Orsetti V, D’Ascenzo C, Querin G, Palmieri A, Ermani M, Angelini C, Pegoraro E (2011) ALS risk but not phenotype is affected by ataxin-2 intermediate length polyglutamine expansion. Neurology 76(23):2030–2031. https://doi.org/10.1212/WNL.0b013e31821e557a

    Article  CAS  PubMed  Google Scholar 

  33. Van Damme P, Veldink JH, van Blitterswijk M, Corveleyn A, van Vught PW, Thijs V, Dubois B, Matthijs G, van den Berg LH, Robberecht W (2011) Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2. Neurology 76(24):2066–2072. https://doi.org/10.1212/WNL.0b013e31821f445b

    Article  CAS  PubMed  Google Scholar 

  34. Van Langenhove T, van der Zee J, Engelborghs S, Vandenberghe R, Santens P, Van den Broeck M, Mattheijssens M, Peeters K, Nuytten D, Cras P, De Deyn PP, De Jonghe P, Cruts M, Van Broeckhoven C (2012) Ataxin-2 polyQ expansions in FTLD-ALS spectrum disorders in Flanders-Belgian cohorts. Neurobiol Aging 33(5):1004.e1017–1004.e1020. https://doi.org/10.1016/j.neurobiolaging.2011.09.025

    Article  CAS  Google Scholar 

  35. Lahut S, Omur O, Uyan O, Agim ZS, Ozoguz A, Parman Y, Deymeer F, Oflazer P, Koc F, Ozcelik H, Auburger G, Basak AN (2012) ATXN2 and its neighbouring gene SH2B3 are associated with increased ALS risk in the Turkish population. PLoS One 7(8):e42956. https://doi.org/10.1371/journal.pone.0042956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu X, Lu M, Tang L, Zhang N, Chui D, Fan D (2013) ATXN2 CAG repeat expansions increase the risk for Chinese patients with amyotrophic lateral sclerosis. Neurobiol Aging 34(9):2236.e2235–2236.e2238. https://doi.org/10.1016/j.neurobiolaging.2013.04.009

    Article  CAS  Google Scholar 

  37. Lu HP, Gan SR, Chen S, Li HF, Liu ZJ, Ni W, Wang N, Wu ZY (2015) Intermediate-length polyglutamine in ATXN2 is a possible risk factor among Eastern Chinese patients with amyotrophic lateral sclerosis. Neurobiol Aging 36(3):1603.e1611–1603.e1604. https://doi.org/10.1016/j.neurobiolaging.2014.10.015

    Article  CAS  Google Scholar 

  38. Soong BW, Lin KP, Guo YC, Lin CC, Tsai PC, Liao YC, Lu YC, Wang SJ, Tsai CP, Lee YC (2014) Extensive molecular genetic survey of Taiwanese patients with amyotrophic lateral sclerosis. Neurobiol Aging 35(10):2423.e2421–2423.e2426. https://doi.org/10.1016/j.neurobiolaging.2014.05.008

    Article  CAS  Google Scholar 

  39. Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48(3):452–458. https://doi.org/10.1038/bmt.2012.244

    Article  CAS  PubMed  Google Scholar 

  40. Takano H, Cancel G, Ikeuchi T, Lorenzetti D, Mawad R, Stevanin G, Didierjean O, Durr A, Oyake M, Shimohata T, Sasaki R, Koide R, Igarashi S, Hayashi S, Takiyama Y, Nishizawa M, Tanaka H, Zoghbi H, Brice A, Tsuji S (1998) Close associations between prevalences of dominantly inherited spinocerebellar ataxias with CAG-repeat expansions and frequencies of large normal CAG alleles in Japanese and Caucasian populations. Am J Hum Genet 63(4):1060–1066. https://doi.org/10.1086/302067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim JY, Park SS, Joo SI, Kim JM, Jeon BS (2001) Molecular analysis of spinocerebellar ataxias in Koreans: frequencies and reference ranges of SCA1, SCA2, SCA3, SCA6, and SCA7. Mol Cells 12(3):336–341

    CAS  PubMed  Google Scholar 

  42. Kim JS, Cho JW (2015) Hereditary cerebellar ataxias: a Korean perspective. J Mov Disord 8(2):67–75. https://doi.org/10.14802/jmd.15006

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tsai HF, Liu CS, Leu TM, Wen FC, Lin SJ, Liu CC, Yang DK, Li C, Hsieh M (2004) Analysis of trinucleotide repeats in different SCA loci in spinocerebellar ataxia patients and in normal population of Taiwan. Acta Neurol Scand 109(5):355–360. https://doi.org/10.1046/j.1600-0404.2003.00229.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the patients for participating in this study. We also thank all the neurologists who provided samples for this study.

Funding

This work was supported in part by KAKENHI (Grants-in-Aid for Scientific Research on Innovative Areas Nos. 22129001 and 22129002) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and Grants-in-Aid [H23-Jitsuyoka (Nanbyo)-Ippan-004 and H26-Jitsuyoka (Nanbyo)-Ippan-080] from the Ministry of Health, Welfare and Labour, Japan, and grants (Nos. 15ek0109065h0002, 16kk0205001h001, 17kk0205001h0002, and 17ek0109279h0001) from the Japan Agency for Medical Research and Development (AMED) to S.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoji Tsuji.

Ethics declarations

Genomic DNA samples were obtained from all the participants with their written informed consent, and this research was approved by the institutional review board of the University of Tokyo.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Fig. 1

Forest plot showing the result of the meta-analysis combining the frequencies of ALS risk alleles (CAG repeat units >29) in the previous studies from various ethnic populations and the present study. (PPTX 51 kb)

Supplementary Table 1.

Distribution of number of CAG/CAA repeat units in ALS and control individuals in various populations (DOC 79 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naruse, H., Matsukawa, T., Ishiura, H. et al. Association of ATXN2 intermediate-length CAG repeats with amyotrophic lateral sclerosis correlates with the distributions of normal CAG repeat alleles among individual ethnic populations. Neurogenetics 20, 65–71 (2019). https://doi.org/10.1007/s10048-019-00570-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-019-00570-9

Keywords

Navigation