Skip to main content

Clinical and neuroimaging features of autosomal recessive spastic paraplegia 35 (SPG35): case reports, new mutations, and brief literature review

Abstract

Spastic paraplegia 35 (SPG35) is a recessive condition characterized by childhood onset, progressive course, complicated by dystonia, dysarthria, cognitive impairment, and epilepsy. Mutations in the FA2H gene have been described in several families, leading to the proposal of a single entity, named fatty acid hydrolase-associated neurodegeneration (FAHN). Several reports have described a polymorphic radiological picture with white matter lesions of various degrees and a distinct form of neurodegeneration with brain iron accumulation. While we reviewed the pertinent literature, we also report three new patients with SPG35, highlighting the possible absence of white matter lesions even after a long neuroimaging follow-up. Three-dimensional modeling of the mutated proteins was helpful to elucidate the role of the site of mutations and the correlation with the residual enzyme activity as determined in cultured skin fibroblasts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Harding A (1993) Hereditary spastic paraplegias. Semin Neurol 13(04):333–336. https://doi.org/10.1055/s-2008-1041143

    CAS  Article  PubMed  Google Scholar 

  2. Lo Giudice T, Lombardi F, Santorelli FM, Kawarai T, Orlacchio A (2014) Hereditary spastic paraplegia: clinical-genetic characteristics and evolving molecular mechanisms. Exp Neurol 261:518–539

    Article  Google Scholar 

  3. Klebe S, Stevanin G, Depienne C (2015) Clinical and genetic heterogeneity in hereditary spastic paraplegias: from SPG1 to SPG72 and still counting. Rev Neurol (Paris) 171:505–530

    CAS  Article  Google Scholar 

  4. Fink JK (2013) Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol 126(3):307–328. https://doi.org/10.1007/s00401-013-1115-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Alderson NL, Rembiesa BM, Walla MD, Bielawska A, Bielawski J, Hama H (2004) The human FA2H gene encodes a fatty acid 2-hydroxylase. J Biol Chem 279(47):48562–48568. https://doi.org/10.1074/jbc.M406649200

    CAS  Article  PubMed  Google Scholar 

  6. Hama H (2010) Fatty acid 2-hydroxylation in mammalian sphingolipid biology. Biochim Biophys Acta-Mol Cell Biol Lipids 1801(4):405–414. https://doi.org/10.1016/j.bbalip.2009.12.004

    CAS  Article  Google Scholar 

  7. Dick KJ, Eckhardt M, Paisán-Ruiz C, Alshehhi AA, Proukakis C, Sibtain NA, Maier H, Sharifi R, Patton MA, Bashir W, Koul R, Raeburn S, Gieselmann V et al (2010) Mutation of FA2H underlies a complicated form of hereditary spastic paraplegia (SPG35). Hum Mutat 31(4):E1251–E1260. https://doi.org/10.1002/humu.21205

    CAS  Article  PubMed  Google Scholar 

  8. Edvardson S, Hama H, Shaag A, Gomori JM, Berger I, Soffer D, Korman SH, Taustein I, Saada A, Elpeleg O (2008) Mutations in the fatty acid 2-hydroxylase gene are associated with Leukodystrophy with spastic Paraparesis and dystonia. Am J Hum Genet 83(5):643–648. https://doi.org/10.1016/j.ajhg.2008.10.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Kruer MC, Paisán-Ruiz C, Boddaert N, Yoon MY, Hama H, Gregory A, Malandrini A, Woltjer RL, Munnich A, Gobin S, Polster BJ, Palmeri S, Edvardson S, Hardy J, Houlden H, Hayflick SJ (2010) Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Ann Neurol 68(5):611–618. https://doi.org/10.1002/ana.22122

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Pierson TM, Simeonov DR, Sincan M, Adams DA, Markello T, Golas G, Fuentes-Fajardo K, Hansen NF, Cherukuri PF, Cruz P, Blackstone C, Tifft C, Boerkoel CF et al (2012) Exome sequencing and SNP analysis detect novel compound heterozygosity in fatty acid hydroxylase-associated neurodegeneration. Eur J Hum Genet 20(4):476–479. https://doi.org/10.1038/ejhg.2011.222

    CAS  Article  PubMed  Google Scholar 

  11. Cao L, Huang XJ, Chen CJ, Di Chen S (2013) A rare family with hereditary spastic paraplegia type 35 due to novel FA2H mutations: a case report with literature review. J Neurol Sci 329(1-2):1–5. https://doi.org/10.1016/j.jns.2013.02.026

    CAS  Article  PubMed  Google Scholar 

  12. Garone C, Pippucci T, Cordelli DM, Zuntini R, Castegnaro G, Marconi C, Graziano C, Marchiani V, Verrotti A, Seri M, Franzoni E (2011) FA2H-related disorders: A novel c.270+3A>T splice-site mutation leads to a complex neurodegenerative phenotype. Dev Med Child Neurol 53:958–961

    Article  Google Scholar 

  13. Pensato V, Castellotti B, Gellera C, Pareyson D, Ciano C, Nanetti L, Salsano E, Piscosquito G, Sarto E, Eoli M, Moroni I, Soliveri P, Lamperti E, Chiapparini L, di Bella D, Taroni F, Mariotti C (2014) Overlapping phenotypes in complex spastic paraplegias SPG11, SPG15, SPG35 and SPG48. Brain 137(7):1907–1920. https://doi.org/10.1093/brain/awu121

    Article  PubMed  Google Scholar 

  14. Tessa A, Battini R, Rubegni A, Storti E, Marini C, Galatolo D, Pasquariello R, Santorelli FM (2016) Identification of mutations in AP4S1/SPG52 through next generation sequencing in three families. Eur J Neurol 23(10):1580–1587. https://doi.org/10.1111/ene.13085

    CAS  Article  PubMed  Google Scholar 

  15. Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320(2):369–387. https://doi.org/10.1016/S0022-2836(02)00442-4

    CAS  Article  PubMed  Google Scholar 

  16. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98(18):10037–10041. https://doi.org/10.1073/pnas.181342398

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Pires DE, Blundell TL, Ascher DB (2016) mCSM-lig: quantifying the effects of mutations on protein-small molecule affinity in genetic disease and emergence of drug resistance. Sci Rep 6(1):29575. https://doi.org/10.1038/srep29575

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dick KJ, Al-Mjeni R, Baskir W, Koul R, Simpson MA, Patton MA, Raeburn S, Crosby AH (2008) A novel locus for an autosomal recessive hereditary spastic paraplegia (SPG35) maps to 16q21-q23. Neurology 71(4):248–252. https://doi.org/10.1212/01.wnl.0000319610.29522.8a

    CAS  Article  PubMed  Google Scholar 

  19. Zaki MS, Selim L, Mansour L, Mahmoud IG, Fenstermaker AG, Gabriel SB, Gleeson JG (2015) Mutations in FA2H in three Arab families with a clinical spectrum of neurodegeneration and hereditary spastic paraparesis. Clin Genet 88(1):95–97. https://doi.org/10.1111/cge.12516

    CAS  Article  PubMed  Google Scholar 

  20. Donkervoort S, Dastgir J, Hu Y, Zein WM, Marks H, Blackstone C, Bönnemann CG (2014) Phenotypic variability of a likely FA2H founder mutation in a family with complicated hereditary spastic paraplegia. Clin Genet 85(4):393–395. https://doi.org/10.1111/cge.12185

    CAS  Article  PubMed  Google Scholar 

  21. Liao X, Luo Y, Zhan Z, Du J, Hu Z, Wang J, Guo J, Yan X (2015) SPG35 contributes to the second common subtype of AR-HSP in China: frequency analysis and functional characterization of FA2H gene mutations. Clin Genet 87(1):85–89. https://doi.org/10.1111/cge.12336

    CAS  Article  PubMed  Google Scholar 

  22. Tonelli A, D’Angelo MG, Arrigoni F, Brighina E, Arnoldi A, Citterio A, Bresolin N, Bassi MT (2012) Atypical adult onset complicated spastic paraparesis with thin corpus callosum in two patients carrying a novel FA2H mutation. Eur J Neurol 19:e127–e129

    CAS  Article  Google Scholar 

  23. Rupps R, Hukin J, Balicki M, Mercimek-Mahmutoglu S, Rolfs A, Dias C (2013) Novel mutations in FA2H -associated neurodegeneration. J Child Neurol 28(11):1500–1504. https://doi.org/10.1177/0883073812458538

    Article  PubMed  Google Scholar 

  24. Aguirre-Rodriguez FJ, Lucenilla MIR, Alvarez-Cubero MJ, Mata C, Entrala-Bernal C, Fernandez-Rosado F (2015) Novel FA2H mutation in a girl with familial spastic paraplegia. J Neurol Sci 357(1-2):332–334. https://doi.org/10.1016/j.jns.2015.07.042

    Article  PubMed  Google Scholar 

  25. Soehn AS, Rattay TW, Beck-Wödl S, Schäferhoff K, Monk D, Döbler-Neumann M, Hörtnagel K, Schlüter A, Ruiz M, Pujol A, Züchner S, Riess O, Schüle R, Bauer P, Schöls L (2016) Uniparental disomy of chromosome 16 unmasks recessive mutations of FA2H/SPG35 in 4 families. Neurology 87(2):186–191. https://doi.org/10.1212/WNL.0000000000002843

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Kara E, Tucci A, Manzoni C, Lynch DS, Elpidorou M, Bettencourt C, Chelban V, Manole A, Hamed SA, Haridy NA, Federoff M, Preza E, Hughes D, Pittman A, Jaunmuktane Z, Brandner S, Xiromerisiou G, Wiethoff S, Schottlaender L, Proukakis C, Morris H, Warner T, Bhatia KP, Korlipara LVP, Singleton AB, Hardy J, Wood NW, Lewis PA, Houlden H (2016) Genetic and phenotypic characterization of complex hereditary spastic paraplegia. Brain 139(7):1904–1918. https://doi.org/10.1093/brain/aww111

    Article  PubMed  PubMed Central  Google Scholar 

  27. Magariello A, Russo C, Citrigno L, Züchner S, Patitucci A, Mazzei R, Conforti FL, Ferlazzo E, Aguglia U, Muglia M (2017) Exome sequencing reveals two FA2H mutations in a family with a complicated form of hereditary spastic paraplegia and psychiatric impairments. J Neurol Sci 372:347–349. https://doi.org/10.1016/j.jns.2016.11.069

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Doctor Catherine J. Wrenn who provided expert editorial assistance. This research was supported in part by the E-RARE-3 Joint Transnational Call grant “Preparing therapies for autosomal recessive ataxias” (PREPARE) (MoH; project 3398 to FMS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renzo Guerrini or Filippo Maria Santorelli.

Ethics declarations

This study was approved by the Tuscany Regional Pediatric Ethics committee. All the procedures complied with the Helsinki Declaration of 1975. Genetic studies were performed after parental written informed consent.

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

The authors wish it to be known that, in their opinion, the first three authors should be regarded as joint First Authors.

Electronic supplementary material

Supplementary Fig. S1
figure 4

(GIF 214 kb)

Supplementary Fig. S2
figure 5

(GIF 143 kb)

High resolution image (TIFF 165 kb)

High resolution image (TIFF 643 kb)

Supplementary Table S1

(XLS 42 kb)

Supplementary Table S2

(DOCX 30 kb)

ESM 1

(DOCX 38 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mari, F., Berti, B., Romano, A. et al. Clinical and neuroimaging features of autosomal recessive spastic paraplegia 35 (SPG35): case reports, new mutations, and brief literature review. Neurogenetics 19, 123–130 (2018). https://doi.org/10.1007/s10048-018-0538-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-018-0538-8

Keywords

  • SPG35
  • FA2H
  • Complicated hereditary spastic paraplegia