The contribution of 7q33 copy number variations for intellectual disability

Abstract

Copy number variations (CNVs) at the 7q33 cytoband are very rarely described in the literature, and almost all of the cases comprise large deletions affecting more than just the q33 segment. We report seven patients (two families with two siblings and their affected mother and one unrelated patient) with neurodevelopmental delay associated with CNVs in 7q33 alone. All the patients presented mild to moderate intellectual disability (ID), dysmorphic features, and a behavioral phenotype characterized by aggressiveness and disinhibition. One family presents a small duplication in cis affecting CALD1 and AGBL3 genes, while the other four patients carry two larger deletions encompassing EXOC4, CALD1, AGBL3, and CNOT4. This work helps to refine the phenotype and narrow the minimal critical region involved in 7q33 CNVs. Comparison with similar cases and functional studies should help us clarify the relevance of the deleted genes for ID and behavioral alterations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Xu Z, Geng Q, Luo F, Xu F, Li P, Xie J (2014) Multiplex ligation-dependent probe amplification and array comparative genomic hybridization analyses for prenatal diagnosis of cytogenomic abnormalities. Mol Cytogenet 7(1):84. https://doi.org/10.1186/s13039-014-0084-5

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Malmgren H, Malm G, Sahlén S, Karlsson M, Blennow E (2005) Molecular cytogenetic characterization of an insertional translocation, ins(6;7)(p25;q33q34): deletion/duplication of 7q33-34 and clinical correlations. Am J Med Genet A 139(1):25–31. https://doi.org/10.1002/ajmg.a.30983

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Yue Y, Grossmann B, Holder SE, Haaf T (2005) De novo t(7;10)(q33;q23) translocation and closely juxtaposed microdeletion in a patient with macrocephaly and developmental delay. Hum Genet 117(1):1–8. https://doi.org/10.1007/s00439-005-1273-4

    Article  PubMed  Google Scholar 

  4. 4.

    Mitchell S, Siegel DH, Shieh JTC, Stevenson DA, Grimmer JF, Lewis T, Metry D, Frieden I, Blei F, Kayserili H, Drolet BA, Bayrak-Toydemir P (2012) Candidate locus analysis for PHACE syndrome. Am J Med Genet A 158A(6):1363–1367. https://doi.org/10.1002/ajmg.a.35341

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Rossi E, Verri AP, Patricelli MG, Destefani V, Ricca I, Vetro A, Ciccone R, Giorda R, Toniolo D, Maraschio P, Zuffardi O (2008) A 12Mb deletion at 7q33-q35 associated with autism spectrum disorders and primary amenorrhea. Eur J Med Genet 51(6):631–638. https://doi.org/10.1016/j.ejmg.2008.06.010

    Article  PubMed  Google Scholar 

  6. 6.

    Petrin AL, Giacheti CM, Maximino LP, Abramides DVM, Zanchetta S, Rossi NF, Richieri-Costa A, Murray JC (2010) Identification of a microdeletion at the 7q33-q35 disrupting the CNTNAP2 gene in a Brazilian stuttering case. Am J Med Genet A 152A(12):3164–3172. https://doi.org/10.1002/ajmg.a.33749

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Ponnala R, Dalal A (2011) Partial monosomy 7q. Indian Pediatr 48(5):399–401

    PubMed  Google Scholar 

  8. 8.

    Verma RS, Conte RA, Sayegh SE, Kanjilal D (1992) The interstitial deletion of bands q33-35 of long arm of chromosome 7: a review with a new case report. Clin Genet 41(2):82–86

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Stallard R, Juberg RC (1981) Partial monosomy 7q syndrome due to distal interstitial deletion. Hum Genet 57(2):210–213

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Nielsen KB, Egede F, Mouridsen I, Mohr J (1979) Familial partial 7q monosomy resulting from segregation of an insertional chromosome rearrangement. J Med Genet 16(6):461–466. https://doi.org/10.1136/jmg.16.6.461

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Dilzell K, Darcy D, Sum J, Wallerstein R (2015) Deletion of 7q33-q35 in a patient with intellectual disability and dysmorphic features: further characterization of 7q interstitial deletion syndrome. Case Rep Genet 2015:131852–131855. https://doi.org/10.1155/2015/131852

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Kale T, Philip M (2016) An interstitial deletion at 7q33-36.1 in a patient with intellectual disability, significant language delay, and severe microcephaly. Case Rep Genet 2016:6046351. https://doi.org/10.1155/2016/6046351

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Bartsch O, Kalbe U, Ngo TK et al (1990) Clinical diagnosis of partial duplication 7q. Am J Med Genet 37(2):254–257. https://doi.org/10.1002/ajmg.1320370218

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Krijgsman O, Israeli D, van Essen HF, Eijk PP, Berens MLM, Mellink CHM, Nieuwint AW, Weiss MM, Steenbergen RDM, Meijer GA, Ylstra B (2013) Detection limits of DNA copy number alterations in heterogeneous cell populations. Cell Oncol Dordr 36(1):27–36. https://doi.org/10.1007/s13402-012-0108-2

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Buffart TE, Israeli D, Tijssen M, Vosse SJ, Mršić A, Meijer GA, Ylstra B (2008) Across array comparative genomic hybridization: a strategy to reduce reference channel hybridizations. Genes Chromosomes Cancer 47(11):994–1004. https://doi.org/10.1002/gcc.20605

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Jovanovic L, Delahunt B, McIver B et al (2003) Optimising restriction enzyme cleavage of DNA derived from archival histopathological samples: an improved HUMARA assay. Pathology (Phila) 35:70–74

    CAS  Google Scholar 

  17. 17.

    Hoebeeck J, van der Luijt R, Poppe B, de Smet E, Yigit N, Claes K, Zewald R, de Jong GJ, de Paepe A, Speleman F, Vandesompele J (2005) Rapid detection of VHL exon deletions using real-time quantitative PCR. Lab Investig J Tech Methods Pathol 85(1):24–33. https://doi.org/10.1038/labinvest.3700209

    CAS  Article  Google Scholar 

  18. 18.

    Wechsler D (1991) Wechsler intelligence scale for children—third edition

  19. 19.

    Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, Vooren SV, Moreau Y, Pettett RM, Carter NP (2009) DECIPHER: database of chromosomal imbalance and phenotype in humans using Ensembl resources. Am J Hum Genet 84(4):524–533. https://doi.org/10.1016/j.ajhg.2009.03.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Newman S, Hermetz KE, Weckselblatt B, Rudd MK (2015) Next-generation sequencing of duplication CNVs reveals that most are tandem and some create fusion genes at breakpoints. Am J Hum Genet 96(2):208–220. https://doi.org/10.1016/j.ajhg.2014.12.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Huang N, Lee I, Marcotte EM, Hurles ME (2010) Characterising and predicting haploinsufficiency in the human genome. PLoS Genet 6(10):e1001154. https://doi.org/10.1371/journal.pgen.1001154

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Rippey C, Walsh T, Gulsuner S, Brodsky M, Nord AS, Gasperini M, Pierce S, Spurrell C, Coe BP, Krumm N, Lee MK, Sebat J, McClellan JM, King MC (2013) Formation of chimeric genes by copy-number variation as a mutational mechanism in schizophrenia. Am J Hum Genet 93(4):697–710. https://doi.org/10.1016/j.ajhg.2013.09.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Córdova-Fletes C, Domínguez MG, Delint-Ramirez I, Martínez-Rodríguez HG, Rivas-Estilla AM, Barros-Núñez P, Ortiz-López R, Neira VA (2015) A de novo t(10;19)(q22.3;q13.33) leads to ZMIZ1/PRR12 reciprocal fusion transcripts in a girl with intellectual disability and neuropsychiatric alterations. Neurogenetics 16(4):287–298. https://doi.org/10.1007/s10048-015-0452-2

    Article  PubMed  Google Scholar 

  24. 24.

    Tort O, Tanco S, Rocha C, Bieche I, Seixas C, Bosc C, Andrieux A, Moutin MJ, Aviles FX, Lorenzo J, Janke C (2014) The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids. Mol Biol Cell 25(19):3017–3027. https://doi.org/10.1091/mbc.E14-06-1072

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Rogowski K, Van DJ, Magiera MM et al (2010) A family of protein-Deglutamylating enzymes associated with neurodegeneration. Cell 143(4):564–578. https://doi.org/10.1016/j.cell.2010.10.014

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    GTEx Portal. http://www.gtexportal.org/home/. Accessed 25 Feb 2017

  27. 27.

    Lin JJ-C, Li Y, Eppinga RD et al (2009) Chapter 1: roles of caldesmon in cell motility and actin cytoskeleton remodeling. Int Rev Cell Mol Biol 274:1–68. https://doi.org/10.1016/S1937-6448(08)02001-7

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Mayanagi T, Sobue K (2011) Diversification of caldesmon-linked actin cytoskeleton in cell motility. Cell Adhes Migr 5(2):150–159. https://doi.org/10.4161/cam.5.2.14398

    Article  Google Scholar 

  29. 29.

    Fukumoto K, Morita T, Mayanagi T, Tanokashira D, Yoshida T, Sakai A, Sobue K (2009) Detrimental effects of glucocorticoids on neuronal migration during brain development. Mol Psychiatry 14(12):1119–1131. https://doi.org/10.1038/mp.2009.60

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Mayanagi T, Morita T, ‘ichiro HK et al (2008) Glucocorticoid receptor-mediated expression of caldesmon regulates cell migration via the reorganization of the actin cytoskeleton. J Biol Chem 283(45):31183–31196. https://doi.org/10.1074/jbc.M801606200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Morita T, Mayanagi T, Sobue K (2012) Caldesmon regulates axon extension through interaction with myosin II. J Biol Chem 287(5):3349–3356. https://doi.org/10.1074/jbc.M111.295618

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Sobue K, Fukumoto K (2010) Caldesmon, an actin-linked regulatory protein, comes across glucocorticoids. Cell Adhes Migr 4(2):185–189. https://doi.org/10.4161/cam.4.2.10886

    Article  Google Scholar 

  33. 33.

    Hsu SC, Ting AE, Hazuka CD, Davanger S, Kenny JW, Kee Y, Scheller RH (1996) The mammalian brain rsec6/8 complex. Neuron 17(6):1209–1219. https://doi.org/10.1016/S0896-6273(00)80251-2

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Gerges NZ, Backos DS, Rupasinghe CN, Spaller MR, Esteban JA (2006) Dual role of the exocyst in AMPA receptor targeting and insertion into the postsynaptic membrane. EMBO J 25(8):1623–1634. https://doi.org/10.1038/sj.emboj.7601065

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Sans N, Prybylowski K, Petralia RS, Chang K, Wang YX, Racca C, Vicini S, Wenthold RJ (2003) NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex. Nat Cell Biol 5(6):520–530. https://doi.org/10.1038/ncb990

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Riefler GM, Balasingam G, Lucas KG et al (2003) Exocyst complex subunit sec8 binds to postsynaptic density protein-95 (PSD-95): a novel interaction regulated by cypin (cytosolic PSD-95 interactor). Biochem J 373(1):49–55. https://doi.org/10.1042/BJ20021838

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Kruk JA, Dutta A, Fu J, Gilmour DS, Reese JC (2011) The multifunctional Ccr4-not complex directly promotes transcription elongation. Genes Dev 25(6):581–593. https://doi.org/10.1101/gad.2020911

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Collart MA (2003) Global control of gene expression in yeast by the Ccr4-not complex. Gene 313:1–16. https://doi.org/10.1016/S0378-1119(03)00672-3

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Grönholm J, Kaustio M, Myllymäki H et al (2012) Not4 enhances JAK/STAT pathway-dependent gene expression in drosophila and in human cells. FASEB J Off Publ Fed Am Soc Exp Biol 26(3):1239–1250. https://doi.org/10.1096/fj.11-195875

    Google Scholar 

  40. 40.

    Rudenko A, Tsai L-H (2014) Epigenetic modifications in the nervous system and their impact upon cognitive impairments. Neuropharmacology 80:70–82. https://doi.org/10.1016/j.neuropharm.2014.01.043

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Mersman DP, Du H-N, Fingerman IM, South PF, Briggs SD (2009) Polyubiquitination of the demethylase Jhd2 controls histone methylation and gene expression. Genes Dev 23(8):951–962. https://doi.org/10.1101/gad.1769209

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Abidi F, Holloway L, Moore CA et al (2009) Novel human pathological mutations. Gene symbol: JARID1C. Disease: mental retardation, X-linked. Hum Genet 125:344

    PubMed  Google Scholar 

  43. 43.

    Ounap K, Puusepp-Benazzouz H, Peters M et al (2012) A novel c.2T > C mutation of the KDM5C/JARID1C gene in one large family with X-linked intellectual disability. Eur J Med Genet 55(3):178–184. https://doi.org/10.1016/j.ejmg.2012.01.004

    Article  PubMed  Google Scholar 

  44. 44.

    Brookes E, Laurent B, Õunap K, Carroll R, Moeschler JB, Field M, Schwartz CE, Gecz J, Shi Y (2015) Mutations in the intellectual disability gene KDM5C reduce protein stability and demethylase activity. Hum Mol Genet 24(10):2861–2872. https://doi.org/10.1093/hmg/ddv046

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    IMPC | International Mouse Phenotyping Consortium. http://www.mousephenotype.org/. Accessed 21 Sep 2017

  46. 46.

    Cnot4 MGI Mouse Gene Detail - MGI:1859026 - CCR4-NOT transcription complex, subunit 4. http://www.informatics.jax.org/marker/MGI:1859026. Accessed 14 Apr 2017

  47. 47.

    Mayo S, Monfort S, Roselló M, Orellana C, Oltra S, Caro-Llopis A, Martínez F (2017) Chimeric genes in deletions and duplications associated with intellectual disability. Int J Genomics 2017:4798474. https://doi.org/10.1155/2017/4798474

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all the patients and their families for their participation in the genetic studies and for allowing this publication. We would also like to acknowledge the DECIPHER Consortium, Database of Genomic Variants, and OMIM since this study makes use of data generated by these platforms.

Funding

This work has been funded by FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE), and by National funds, through the Foundation for Science and Technology (FCT), under the scope of the projects PIC/IC/83026/2007, PIC/IC/83013/2007, and POCI-01-0145-FEDER-007038. This work has also been funded by the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). FL was supported by Foundation for Science and Technology (FCT) through the fellowship SFRH/BD/90167/2012.

Author information

Affiliations

Authors

Contributions

FL, FT, SS, and PR performed the molecular studies and analyzed the molecular data. AMF, SAL, AJ, and JS collected clinical data. FL, FT, and PM drafted the paper. PM obtained funding for this study. The study was performed under the direction of PM.

Corresponding author

Correspondence to Patrícia Maciel.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lopes, F., Torres, F., Lynch, S.A. et al. The contribution of 7q33 copy number variations for intellectual disability. Neurogenetics 19, 27–40 (2018). https://doi.org/10.1007/s10048-017-0533-5

Download citation

Keywords

  • 7q33 CNVs
  • CALD1
  • AGBL3
  • EXOC4
  • CNOT4
  • Duplication