neurogenetics

, Volume 18, Issue 1, pp 29–38 | Cite as

DRD2 C957T polymorphism is associated with improved 6-month verbal learning following traumatic brain injury

  • John K. Yue
  • Ethan A. Winkler
  • Jonathan W. Rick
  • John F. Burke
  • Thomas W. McAllister
  • Sam S. Oh
  • Esteban G. Burchard
  • Donglei Hu
  • Jonathan Rosand
  • Nancy R. Temkin
  • Frederick K. Korley
  • Marco D. Sorani
  • Adam R. Ferguson
  • Hester F. Lingsma
  • Sourabh Sharma
  • Caitlin K. Robinson
  • Esther L. Yuh
  • Phiroz E. Tarapore
  • Kevin K.W. Wang
  • Ava M. Puccio
  • Pratik Mukherjee
  • Ramon Diaz-Arrastia
  • Wayne A. Gordon
  • Alex B. Valadka
  • David O. Okonkwo
  • Geoffrey T. Manley
  • TRACK-TBI Investigators
Original Article
  • 222 Downloads

Abstract

Traumatic brain injury (TBI) often leads to heterogeneous clinical outcomes, which may be influenced by genetic variation. A single-nucleotide polymorphism (SNP) in the dopamine D2 receptor (DRD2) may influence cognitive deficits following TBI. However, part of the association with DRD2 has been attributed to genetic variability within the adjacent ankyrin repeat and kinase domain containing 1 protein (ANKK1). Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether a novel DRD2 C957T polymorphism (rs6277) influences outcome on a cognitive battery at 6 months following TBI—California Verbal Learning Test (CVLT-II), Wechsler Adult Intelligence Test Processing Speed Index Composite Score (WAIS-PSI), and Trail Making Test (TMT). Results in 128 Caucasian subjects show that the rs6277 T-allele associates with better verbal learning and recall on CVLT-II Trials 1–5 (T-allele carrier 52.8 ± 1.3 points, C/C 47.9 ± 1.7 points; mean increase 4.9 points, 95% confidence interval [0.9 to 8.8]; p = 0.018), Short-Delay Free Recall (T-carrier 10.9 ± 0.4 points, C/C 9.7 ± 0.5 points; mean increase 1.2 points [0.1 to 2.5]; p = 0.046), and Long-Delay Free Recall (T-carrier 11.5 ± 0.4 points, C/C 10.2 ± 0.5 points; mean increase 1.3 points [0.1 to 2.5]; p = 0.041) after adjusting for age, education years, Glasgow Coma Scale, presence of acute intracranial pathology on head computed tomography scan, and genotype of the ANKK1 SNP rs1800497 using multivariable regression. No association was found between DRD2 C947T and non-verbal processing speed (WAIS-PSI) or mental flexibility (TMT) at 6 months. Hence, DRD2 C947T (rs6277) may be associated with better performance on select cognitive domains independent of ANKK1 following TBI.

Keywords

Traumatic brain injury Genetic factors Cognition Outcome measures Human studies 

References

  1. 1.
    Faul M, Xu L, Wald MM, Coronado VG (2010) Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths, 2002–2006. Centers for Disease Control and Prevention, National Center for Injury.Google Scholar
  2. 2.
    Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7:728–741CrossRefPubMedGoogle Scholar
  3. 3.
    Teasdale G, Maas A, Lecky F, Manley G, Stocchetti N, Murray G (2014) The Glasgow Coma Scale at 40 years: standing the test of time. Lancet Neurol 13:844–854CrossRefPubMedGoogle Scholar
  4. 4.
    Ponsford J, Draper K, Schonberger M (2008) Functional outcome 10 years after traumatic brain injury: its relationship with demographic, injury severity, and cognitive and emotional status. J Int Neuropsychol Soc 14:233–242CrossRefPubMedGoogle Scholar
  5. 5.
    Langlois JA, Rutland-Brown W, Wald MM (2006) The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 21:375–378CrossRefPubMedGoogle Scholar
  6. 6.
    McAllister TW (2008) Neurobehavioral sequelae of traumatic brain injury: evaluation and management. World Psychiatry 7:3–10CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Manley GT, Maas AI (2013) Traumatic brain injury: an international knowledge-based approach. JAMA 310:473–474CrossRefPubMedGoogle Scholar
  8. 8.
    Dardiotis E, Fountas KN, Dardioti M, Xiromerisiou G, Kapsalaki E, Tasiou A, Hadjigeorgiou GM (2010) Genetic association studies in patients with traumatic brain injury. Neurosurg Focus 28:E9CrossRefPubMedGoogle Scholar
  9. 9.
    Davidson J, Cusimano MD, Bendena WG (2014) Post-traumatic brain injury: genetic susceptibility to outcome. Neuroscientist.Google Scholar
  10. 10.
    Diaz-Arrastia R, Baxter VK (2006) Genetic factors in outcome after traumatic brain injury: what the human genome project can teach us about brain trauma. J Head Trauma Rehabil 21:361–374CrossRefPubMedGoogle Scholar
  11. 11.
    Jordan BD (2007) Genetic influences on outcome following traumatic brain injury. Neurochem Res 32:905–915CrossRefPubMedGoogle Scholar
  12. 12.
    McAllister TW (2009) Polymorphisms in genes modulating the dopamine system: do they influence outcome and response to medication after traumatic brain injury? J Head Trauma Rehabil 24:65–68CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    McAllister TW, Flashman LA, Harker Rhodes C, Tyler AL, Moore JH, Saykin AJ, McDonald BC, Tosteson TD, Tsongalis GJ (2008) Single nucleotide polymorphisms in ANKK1 and the dopamine D2 receptor gene affect cognitive outcome shortly after traumatic brain injury: a replication and extension study. Brain Inj 22:705–714CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Levey AI, Hersch SM, Rye DB, Sunahara RK, Niznik HB, Kitt CA, Price DL, Maggio R, Brann MR, Ciliax BJ (1993) Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci U S A 90:8861–8865CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Voisey J, Swagell CD, Hughes IP, Morris CP, van Daal A, Noble EP, Kann B, Heslop KA, Young RM, Lawford BR (2009) The DRD2 gene 957C>T polymorphism is associated with posttraumatic stress disorder in war veterans. Depress Anxiety 26:28–33CrossRefPubMedGoogle Scholar
  16. 16.
    Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494CrossRefPubMedGoogle Scholar
  17. 17.
    White NM, Viaud M (1991) Localized intracaudate dopamine D2 receptor activation during the post-training period improves memory for visual or olfactory conditioned emotional responses in rats. Behav Neural Biol 55:255–269CrossRefPubMedGoogle Scholar
  18. 18.
    McAllister TW, Rhodes CH, Flashman LA, McDonald BC, Belloni D, Saykin AJ (2005) Effect of the dopamine D2 receptor T allele on response latency after mild traumatic brain injury. Am J Psychiatry 162:1749–1751CrossRefPubMedGoogle Scholar
  19. 19.
    Duan J, Wainwright MS, Comeron JM, Saitou N, Sanders AR, Gelernter J, Gejman PV (2003) Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum Mol Genet 12:205–216CrossRefPubMedGoogle Scholar
  20. 20.
    Grandy DK, Litt M, Allen L, Bunzow JR, Marchionni M, Makam H, Reed L, Magenis RE, Civelli O (1989) The human dopamine D2 receptor gene is located on chromosome 11 at q22-q23 and identifies a TaqI RFLP. Am J Hum Genet 45:778–785PubMedPubMedCentralGoogle Scholar
  21. 21.
    Doll BB, Hutchison KE, Frank MJ (2011) Dopaminergic genes predict individual differences in susceptibility to confirmation bias. J Neurosci 31:6188–6198CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chien YL, Hwu HG, Fann CS, Chang CC, Tsuang MT, Liu CM (2013) DRD2 haplotype associated with negative symptoms and sustained attention deficits in Han Chinese with schizophrenia in Taiwan. J Hum Genet 58:229–232CrossRefPubMedGoogle Scholar
  23. 23.
    Kane JM, Cornblatt B, Correll CU, Goldberg T, Lencz T, Malhotra AK, Robinson D, Szeszko P (2012) The field of schizophrenia: strengths, weaknesses, opportunities, and threats. Schizophr Bull 38:1–4CrossRefPubMedGoogle Scholar
  24. 24.
    Ramsay H, Barnett JH, Miettunen J, Mukkala S, Maki P, Liuhanen J, Murray GK, Jarvelin MR, Ollila H, Paunio T, Veijola J (2015) Association between dopamine receptor D2 (DRD2) variations rs6277 and rs1800497 and cognitive performance according to risk type for psychosis: a nested case control study in a Finnish population sample. PLoS One 10:e0127602CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Swagell CD, Lawford BR, Hughes IP, Voisey J, Feeney GF, van Daal A, Connor JP, Noble EP, Morris CP, Young RM (2012) DRD2 C957T and TaqIA genotyping reveals gender effects and unique low-risk and high-risk genotypes in alcohol dependence. Alcohol Alcohol 47:397–403CrossRefPubMedGoogle Scholar
  26. 26.
    Yue JK, Vassar MJ, Lingsma HF, Cooper SR, Okonkwo DO, Valadka AB, Gordon WA, Maas AI, Mukherjee P, Yuh EL, Puccio AM, Schnyer DM, Manley GT, Investigators TRACK-TBI (2013) Transforming research and clinical knowledge in traumatic brain injury pilot: multicenter implementation of the common data elements for traumatic brain injury. J Neurotrauma 30:1831–1844CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Duhaime AC, Gean AD, Haacke EM, Hicks R, Wintermark M, Mukherjee P, Brody D, Latour L, Riedy G (2010) Common data elements in radiologic imaging of traumatic brain injury. Arch Phys Med Rehabil 91:1661–1666CrossRefPubMedGoogle Scholar
  28. 28.
    Maas AI, Harrison-Felix CL, Menon D, Adelson PD, Balkin T, Bullock R, Engel DC, Gordon W, Orman JL, Lew HL, Robertson C, Temkin N, Valadka A, Verfaellie M, Wainwright M, Wright DW, Schwab K (2010) Common data elements for traumatic brain injury: recommendations from the interagency working group on demographics and clinical assessment. Arch Phys Med Rehabil 91:1641–1649CrossRefPubMedGoogle Scholar
  29. 29.
    Manley GT, Diaz-Arrastia R, Brophy M, Engel D, Goodman C, Gwinn K, Veenstra TD, Ling G, Ottens AK, Tortella F, Hayes RL (2010) Common data elements for traumatic brain injury: recommendations from the biospecimens and biomarkers working group. Arch Phys Med Rehabil 91:1667–1672CrossRefPubMedGoogle Scholar
  30. 30.
    Wilde EA, Whiteneck GG, Bogner J, Bushnik T, Cifu DX, Dikmen S, French L, Giacino JT, Hart T, Malec JF, Millis SR, Novack TA, Sherer M, Tulsky DS, Vanderploeg RD, von Steinbuechel N (2010) Recommendations for the use of common outcome measures in traumatic brain injury research. Arch Phys Med Rehabil 91(1650–1660):e1617Google Scholar
  31. 31.
    Okonkwo DO, Yue JK, Puccio AM, Panczykowski DM, Inoue T, McMahon PJ, Sorani MD, Yuh EL, Lingsma HF, Maas AI, Valadka AB, Manley GT (2013) GFAP-BDP as an acute diagnostic marker in traumatic brain injury: results from the prospective transforming research and clinical knowledge in traumatic brain injury study. J Neurotrauma 30:1490–1497CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Stallings G, Boake C, Sherer M (1995) Comparison of the California Verbal Learning Test and the Rey Auditory Verbal Learning Test in head-injured patients. J Clin Exp Neuropsychol 17:706–712CrossRefPubMedGoogle Scholar
  33. 33.
    Delis DC, Kramer JH, Kaplan E, Ober BA (2000) California Verbal Learning Test, Second Edition. Psychological Corporation: San Antonio, TX.Google Scholar
  34. 34.
    Wechsler, D. (2008). Wechsler Adult Intelligence Scale—fourth edition. Pearson: Texas.Google Scholar
  35. 35.
    Kennedy JE, Clement PF, Curtiss G (2003) WAIS-III processing speed index scores after TBI: the influence of working memory, psychomotor speed and perceptual processing. Clin Neuropsychol 17:303–307CrossRefPubMedGoogle Scholar
  36. 36.
    Reitan RM (1958) Validity of the Trail Making Test as an indicator of organic brain damage. Percept Mot Skills 8:271–276CrossRefGoogle Scholar
  37. 37.
    Sanchez-Cubillo I, Perianez JA, Adrover-Roig D, Rodriguez-Sanchez JM, Rios-Lago M, Tirapu J, Barcelo F (2009) Construct validity of the Trail Making Test: role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J Int Neuropsychol Soc 15:438–450CrossRefPubMedGoogle Scholar
  38. 38.
    Voisey J, Swagell CD, Hughes IP, van Daal A, Noble EP, Lawford BR, Young RM, Morris CP (2012) A DRD2 and ANKK1 haplotype is associated with nicotine dependence. Psychiatry Res 196:285–289CrossRefPubMedGoogle Scholar
  39. 39.
    Libon DJ, Bondi MW, Price CC, Lamar M, Eppig J, Wambach DM, Nieves C, Delano-Wood L, Giovannetti T, Lippa C, Kabasakalian A, Cosentino S, Swenson R, Penney DL (2011) Verbal serial list learning in mild cognitive impairment: a profile analysis of interference, forgetting, and errors. J Int Neuropsychol Soc 17:905–914CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Karr JE, Areshenkoff CN, Garcia-Barrera MA (2014) The neuropsychological outcomes of concussion: a systematic review of meta-analyses on the cognitive sequelae of mild traumatic brain injury. Neuropsychology 28:321–336CrossRefPubMedGoogle Scholar
  41. 41.
    McCauley SR, Wilde EA, Miller ER, Frisby ML, Garza HM, Varghese R, Levin HS, Robertson CS, McCarthy JJ (2013) Preinjury resilience and mood as predictors of early outcome following mild traumatic brain injury. J Neurotrauma 30:642–652CrossRefPubMedGoogle Scholar
  42. 42.
    Failla MD, Myrga JM, Ricker JH, Dixon CE, Conley YP, Wagner AK (2015) Posttraumatic brain injury cognitive performance is moderated by variation within ANKK1 and DRD2 genes. J Head Trauma Rehabil 30:E54–E66CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Frenette AJ, Kanji S, Rees L, Williamson DR, Perreault MM, Turgeon AF, Bernard F, Fergusson DA (2012) Efficacy and safety of dopamine agonists in traumatic brain injury: a systematic review of randomized controlled trials. J Neurotrauma 29:1–18CrossRefPubMedGoogle Scholar
  44. 44.
    Yung KK, Bolam JP, Smith AD, Hersch SM, Ciliax BJ, Levey AI (1995) Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65:709–730CrossRefPubMedGoogle Scholar
  45. 45.
    Packard MG, Knowlton BJ (2002) Learning and memory functions of the basal ganglia. Annu Rev Neurosci 25:563–593CrossRefPubMedGoogle Scholar
  46. 46.
    Hirvonen MM, Laakso A, Nagren K, Rinne JO, Pohjalainen T, Hietala J (2009) C957T polymorphism of dopamine D2 receptor gene affects striatal DRD2 in vivo availability by changing the receptor affinity. Synapse 63:907–912CrossRefPubMedGoogle Scholar
  47. 47.
    Bolton JL, Marioni RE, Deary IJ, Harris SE, Stewart MC, Murray GD, Fowkes FG, Price JF (2010) Association between polymorphisms of the dopamine receptor D2 and catechol-o-methyl transferase genes and cognitive function. Behav Genet 40:630–638CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • John K. Yue
    • 1
    • 2
  • Ethan A. Winkler
    • 1
    • 2
  • Jonathan W. Rick
    • 1
    • 2
  • John F. Burke
    • 1
    • 2
  • Thomas W. McAllister
    • 3
  • Sam S. Oh
    • 4
  • Esteban G. Burchard
    • 4
  • Donglei Hu
    • 4
  • Jonathan Rosand
    • 5
    • 6
  • Nancy R. Temkin
    • 7
  • Frederick K. Korley
    • 8
  • Marco D. Sorani
    • 1
    • 2
  • Adam R. Ferguson
    • 1
    • 2
  • Hester F. Lingsma
    • 9
  • Sourabh Sharma
    • 1
    • 2
  • Caitlin K. Robinson
    • 1
    • 2
  • Esther L. Yuh
    • 1
    • 10
  • Phiroz E. Tarapore
    • 1
    • 2
  • Kevin K.W. Wang
    • 11
  • Ava M. Puccio
    • 12
  • Pratik Mukherjee
    • 1
    • 10
  • Ramon Diaz-Arrastia
    • 13
    • 14
  • Wayne A. Gordon
    • 15
  • Alex B. Valadka
    • 16
  • David O. Okonkwo
    • 12
  • Geoffrey T. Manley
    • 1
    • 2
  • TRACK-TBI Investigators
  1. 1.Department of Neurological SurgeryUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Brain and Spinal Injury CenterSan Francisco General HospitalSan FranciscoUSA
  3. 3.Department of PsychiatryIndiana University School of MedicineIndianapolisUSA
  4. 4.Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoUSA
  5. 5.Department of NeurologyHarvard Medical SchoolBostonUSA
  6. 6.Program in Medical and Population GeneticsThe Broad Institute of MIT and HarvardCambridgeUSA
  7. 7.Department of Neurological Surgery and BiostatisticsUniversity of WashingtonSeattleUSA
  8. 8.Department of Emergency MedicineJohns Hopkins UniversityBaltimoreUSA
  9. 9.Department of Public HealthErasmus Medical CenterRotterdamThe Netherlands
  10. 10.Department of RadiologyUniversity of California, San FranciscoSan FranciscoUSA
  11. 11.Center for Neuroproteomics and Biomarkers Research, Department of Psychiatry and NeuroscienceUniversity of FloridaGainesvilleUSA
  12. 12.Department of Neurological SurgeryUniversity of Pittsburgh Medical CenterPittsburghUSA
  13. 13.Department of NeurologyUniformed Services University of the Health SciencesBethesdaUSA
  14. 14.Center for Neuroscience and Regenerative MedicineBethesdaUSA
  15. 15.Department of Rehabilitation MedicineIcahn School of Medicine at Mount SinaiNew YorkUSA
  16. 16.Department of Neurological SurgeryVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations