Skip to main content
Log in

Homozygous mutation in the APOA1BP is associated with a lethal infantile leukoencephalopathy

  • Short Communication
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Febrile-induced neurodegenerative diseases are a heterogeneous group of genetic disorders most commonly inborn errors of metabolism that result in irreversible damage involving the central nervous system. Here, we report on five siblings of consanguineous family who developed normally for the first 6–12 months of life then presented with a severe leukoencephalopathy following a trivial febrile illness. Using homozygosity mapping followed by whole exome sequencing, we identified a homozygous c. 281C>A mutation in the APOA1BP gene resulting in substitution of a highly conserved alanine residue with aspartic acid (p.Ala94Asp). APOA1BP encodes for epimerase that catalyzes the R to S epimerization of NAD(P)XH, a crucial step in the dehydration of these toxic metabolites accumulating during cellular metabolism. This is the first report of a defect in the nicotinamide nucleotide repair system in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Lake NJ, Compton AG, Rahman S, Thorburn DR (2016) Leigh syndrome: one disorder, more than 75 monogenic causes. Ann Neurol 79:190–203

    Article  PubMed  Google Scholar 

  2. Spiegel R, Pines O, Ta-Shma A, Burak E, Shaag A, Halvardson J, Edvardson S, Mahajna M, Zenvirt S, Saada A, Shalev S, Feuk L, Elpeleg O (2012) Infantile cerebellar-retinal degeneration associated with a mutation in mitochondrial aconitase, ACO2. Am J Hum Genet 90:518–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kölker S, Koeller DM, Okun JG, Hoffmann GF (2004) Pathomechanisms of neurodegeneration in glutaryl-CoA dehydrogenase deficiency. Ann Neurol 55:7–12

    Article  PubMed  Google Scholar 

  4. Melo DR, Kowaltowski AJ, Wajner M, Castilho RF (2011) Mitochondrial energy metabolism in neurodegeneration associated with methylmalonic acidemia. J Bioenerg Biomembr 43:39–46

    Article  CAS  PubMed  Google Scholar 

  5. Ritter M, Buechler C, Boettcher A, Barlage S, Schmitz-Madry A, Orsó E, Bared SM, Schmiedeknecht G, Baehr CH, Fricker G, Schmitz G (2002) Cloning and characterization of a novel apolipoprotein A-I binding protein, AI-BP, secreted by cells of the kidney proximal tubules in response to HDL or ApoA-I. Genomics 79:693–702

    Article  CAS  PubMed  Google Scholar 

  6. Rafter GW, Chaykin S, Krebs EG (1954) The action of glyceraldehyde-3-phosphate dehydrogenase on reduced diphosphopyridine nucleotide. J Biol Chem 208:799–811

    CAS  PubMed  Google Scholar 

  7. Yoshida A, Dave V (1975) Inhibition of NADP-dependent dehydrogenases by modified products of NADPH. Arch Biochem Biophys 169:298–303

    Article  CAS  PubMed  Google Scholar 

  8. Meinhart JO, Chaykin S, Krebs EG (1956) Enzymatic conversion of a reduced diphosphopyridine nucleotide derivative to reduced diphosphopyridine nucleotide. J Biol Chem 220:821–829

    CAS  PubMed  Google Scholar 

  9. Regueiro-Varela B, Amelunxen R, Grisolia S (1970) Synthesis and degradation of monohydroxytetrahydronicotinamide adenine dinucleotide phosphate. Physiol Chem Phys 2:445–454

    CAS  Google Scholar 

  10. Marbaix AY, Tyteca D, Niehaus TD, Hanson AD, Linster CL, Van Schaftingen E (2014) Occurrence and subcellular distribution of the NADPHX repair system in mammals. Biochem J 460:49–58

    Article  CAS  PubMed  Google Scholar 

  11. Marbaix AY, Noël G, Detroux AM, Vertommen D, Van Schaftingen E, Linster CL (2011) Extremely conserved ATP- or ADP-dependent enzymatic system for nicotinamide nucleotide repair. J Biol Chem 286:41246–41252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Breslow DK, Cameron DM, Collins SR, Schuldiner M, Stewart-Ornstein J, Newman HW, Braun S, Madhani HD, Krogan NJ, Weissman JS (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5:711–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mishra A, Traut MH, Becker L, Klopstock T, Stein V, Klein R (2014) Genetic evidence for the adhesion protein IgSF9/Dasm1 to regulate inhibitory synapse development independent of its intracellular domain. J Neurosci 34:4187–4199

    Article  PubMed  Google Scholar 

  14. Van der Knaap MS, Leegwater PA, Könst AA, Visser A, Naidu S, Oudejans CB, Schutgens RB, Pronk JC (2002) Mutations in each of the five subunits of translation initiation factor eIF2B can cause leukoencephalopathy with vanishing white matter. Ann Neurol 51:264–270

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronen Spiegel.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Electronic supplementary material

ESM 1

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiegel, R., Shaag, A., Shalev, S. et al. Homozygous mutation in the APOA1BP is associated with a lethal infantile leukoencephalopathy. Neurogenetics 17, 187–190 (2016). https://doi.org/10.1007/s10048-016-0483-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-016-0483-3

Keywords

Navigation