Skip to main content

Advertisement

Log in

A de novo t(10;19)(q22.3;q13.33) leads to ZMIZ1/PRR12 reciprocal fusion transcripts in a girl with intellectual disability and neuropsychiatric alterations

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

We report a girl with intellectual disability (ID), neuropsychiatric alterations, and a de novo balanced t(10;19)(q22.3;q13.33) translocation. After chromosome sorting, fine mapping of breakpoints by array painting disclosed disruptions of the zinc finger, MIZ-type containing 1 (ZMIZ1) (on chr10) and proline-rich 12 (PRR12) (on chr19) genes. cDNA analyses revealed that the translocation resulted in gene fusions. The resulting hybrid transcripts predict mRNA decay or, if translated, formation of truncated proteins, both due to frameshifts that introduced premature stop codons. Though other molecular mechanisms may be operating, these results suggest that haploinsufficiency of one or both genes accounts for the patient’s phenotype. ZMIZ1 is highly expressed in the brain, and its protein product appears to interact with neuron-specific chromatin remodeling complex (nBAF) and activator protein 1 (AP-1) complexes which play a role regulating the activity of genes essential for normal synapse and dendrite growth/behavior. Strikingly, the patient’s phenotype overlaps with phenotypes caused by mutations in SMARCA4 (BRG1), an nBAF subunit presumably interacting with ZMIZ1 in brain cells as suggested by our results of coimmunoprecipitation in the mouse brain. PRR12 is also expressed in the brain, and its protein product possesses domains and residues thought to be related in formation of large protein complexes and chromatin remodeling. Our observation from E15 mouse brain cells that a Prr12 isoform was confined to nucleus suggests a role as a transcription nuclear cofactor likely involved in neuronal development. Moreover, a pilot transcriptome analysis from t(10;19) lymphoblastoid cell line suggests dysregulation of genes linked to neurodevelopment processes/neuronal communication (e.g., NRCAM) most likely induced by altered PRR12. This case represents the first constitutional balanced translocation disrupting and fusing both genes and provides clues for the potential function and effects of these in the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bugge M, Bruun-Petersen G, Brøndum-Nielsen K et al (2000) Disease associated balanced chromosome rearrangements: a resource for large scale genotype-phenotype delineation in man. J Med Genet 37:858–865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Yue Y, Grossmann B, Holder SE, Haaf T (2005) De novo t(7;10)(q33;q23) translocation and closely juxtaposed microdeletion in a patient with macrocephaly and developmental delay. Hum Genet 117:1–8

    Article  PubMed  Google Scholar 

  3. De Gregori M, Ciccone R, Magini P et al (2007) Cryptic deletions are a common finding in “balanced” reciprocal and complex chromosome rearrangements: a study of 59 patients. J Med Genet 44:750–762

    Article  PubMed Central  PubMed  Google Scholar 

  4. Stankiewicz P, Beaudet A (2007) Use of array CGH in the evaluation of dysmorphology, malformations, developmental delay, and idiopathic mental retardation. Curr Opin Genet Dev 17:182–192

    Article  CAS  PubMed  Google Scholar 

  5. Borsani G, Piovani G, Zoppi N et al (2008) Cytogenetic and molecular characterization of a de-novo t(2p;7p) translocation involving TNS3 and EXOC6B genes in a boy with a complex syndromic phenotype. Eur J Med Genet 51:292–302

    Article  PubMed  Google Scholar 

  6. Schluth-Bolard C, Delobel B, Sanlaville D et al (2009) Cryptic genomic imbalances in de novo and inherited apparently balanced chromosomal rearrangements: array CGH study of 47 unrelated cases. Eur J Med Genet 52:291–296

    Article  PubMed  Google Scholar 

  7. Vandeweyer G, Kooy RF (2009) Balanced translocations in mental retardation. Hum Genet 126:133–147

    Article  CAS  PubMed  Google Scholar 

  8. Backx L, Seuntjens E, Devriendt K et al (2011) A balanced translocation t(6;14)(q25.3;q13.2) leading to reciprocal fusion transcripts in a patient with intellectual disability and agenesis of corpus callosum. Cytogenet Genome Res 132:135–143

    Article  CAS  PubMed  Google Scholar 

  9. Ropers HH (2007) New perspectives for the elucidation of genetic disorders. Am J Hum Genet 81:199–207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Laumonnier F, Cuthbert PC, Grant SG (2007) The role of neuronal complexes in human X-linked brain diseases. Am J Hum Genet 80:205–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Tsurusaki Y, Okamoto N, Ohashi H et al (2012) Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome. Nat Genet 44:376–378

    Article  CAS  PubMed  Google Scholar 

  12. Kim HG, Kim HT, Leach NT et al (2012) Translocations disrupting PHF21A in the Potocki-Shaffer-syndrome region are associated with intellectual disability and craniofacial anomalies. Am J Hum Genet 91:56–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Fiegler H, Gribble SM, Burford DC et al (2003) Array painting: a method for the rapid analysis of aberrant chromosomes using DNA microarrays. J Med Genet 40:664–670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Veltman IM, Veltman JA, Arkesteijn G et al (2003) Chromosomal breakpoint mapping by arrayCGH using flow-sorted chromosomes. Biotechniques 35:1066–1070

    CAS  PubMed  Google Scholar 

  15. Arkesteijn G, Jumelet E, Hagenbeek A et al (1999) Reverse chromosome painting for the identification of marker chromosomes and complex translocations in leukemia. Cytometry 35:117–124

    Article  CAS  PubMed  Google Scholar 

  16. Chen W, Erdogan F, Ropers HH et al (2005) CGHPRO—a comprehensive data analysis tool for array CGH. BMC Bioinforma 6:85

    Article  Google Scholar 

  17. Carlin RK, Grab DJ, Cohen RS, Siekevitz P (1980) Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. J Cell Biol 86:831–845

    Article  CAS  PubMed  Google Scholar 

  18. Lovtrup-Rein H, McEwen BS (1966) Isolation and fractionation of rat brain nuclei. J Cell Biol 30:405–415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Delint-Ramírez I, Salcedo-Tello P, Bermudez-Rattoni F (2008) Spatial memory formation induces recruitment of NMDA receptor and PSD-95 to synaptic lipid rafts. J Neurochem 106:1658–1668

    Article  PubMed  Google Scholar 

  20. Bolotin E, Armendariz A, Kim K et al (2014) Statin-induced changes in gene expression in EBV-transformed and native B-cells. Hum Mol Genet 23:1202–1210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Jensen P, Magdaleno S, Lehman KM et al (2004) Aneurogenomics approach to gene expression analysis in the developing brain. Brain Res Mol Brain Res 132:116–127

    Article  CAS  PubMed  Google Scholar 

  22. Sharma M, Li X, Wang Y et al (2003) hZimp10 is an androgen receptor co-activator and forms a complex with SUMO-1 at replication foci. EMBO J 22:6101–6114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Beliakoff J, Lee J, Ueno H et al (2008) The PIAS-like protein Zimp10 is essential for embryonic viability and proper vascular development. Mol Cell Biol 28:282–292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Henderson P, van Limbergen JE, Wilson DC et al (2011) Genetics of childhood-onset inflammatory bowel disease. Inflamm Bowel Dis 17:346–361

    Article  PubMed  Google Scholar 

  25. Rodriguez-Magadán H, Merino E, Schnabel D et al (2008) Spatial and temporal expression of Zimp7 and Zimp10 PIAS-like proteins in the developing mouse embryo. Gene Expr Patterns 8:206–213

    Article  PubMed  Google Scholar 

  26. Nagase T, Ishikawa K, Kikuno R et al (1999) Prediction of the coding sequences of unidentified human genes. XV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res 6:337–345

    Article  CAS  PubMed  Google Scholar 

  27. Darnell JC, Van Driesche SJ, Zhang C et al (2011) FMRP Stalls Ribosomal Translocation on mRNAs Linked to Synaptic Function and Autism. Cell 146:247–261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Li X, Zhu C, Tu WH et al (2011) ZMIZ1 preferably enhances the transcriptional activity of androgen receptor with short polyglutamine tract. PLoS One 6, e25040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Wu JI, Lessard J, Olave IA et al (2007) Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56:94–108

    Article  CAS  PubMed  Google Scholar 

  30. Gass P, Fleischmann A, Hvalby O et al (2004) Mice with a fra-1 knock-in into the c-fos locus show impaired spatial but regular contextual learning and normal LTP. Brain Res Mol Brain Res 130:16–22

    Article  CAS  PubMed  Google Scholar 

  31. Alberini CM (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89:121–145

    Article  CAS  PubMed  Google Scholar 

  32. Pérez-Cadahía B, Drobic B, Davie JR (2011) Activation and function of immediate-early genes in the nervous system. Biochem Cell Biol 89:61–73

    Article  PubMed  Google Scholar 

  33. Vonhoff F, Kuehn C, Blumenstock S et al (2013) Temporal coherency between receptor expression, neural activity and AP-1-dependent transcription regulates Drosophila motoneuron dendrite development. Development 140:606–616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ferreira MA, O'Donovan MC, Meng YA et al (2008) Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 40:1056–1058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Disanto G, Sandve GK, Berlanga-Taylor AJ et al (2012) Vitamin D receptor binding, chromatin states and association with multiple sclerosis. Hum Mol Genet 21:3575–3586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Amunts K, Kedo O, Kindler M et al (2005) Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl) 210:343–352

    Article  CAS  Google Scholar 

  37. Hussain R, Ghoumari AM, Bielecki B et al (2013) The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination. Brain 136:132–146

    Article  PubMed  Google Scholar 

  38. Cunningham RL, Lumia AR, McGinnis MY (2012) Androgen receptors, sex behavior, and aggression. Neuroendocrinology 96:131–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Kosho T, Okamoto N, Ohashi H et al (2013) Clinical Correlations of Mutations Affecting Six Components of the SWI/SNF Complex: Detailed Description of 21 Patients and a Review of the Literature. Am J Med Genet A 161A:1221–1237

    Article  PubMed  Google Scholar 

  40. Rigbolt KT, Prokhorova TA, Akimov V et al (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4(164):rs3

    Article  PubMed  Google Scholar 

  41. Aravind L, Landsman D (1998) AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res 26:4413–4421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    Article  CAS  PubMed  Google Scholar 

  43. Baker SA, Chen L, Wilkins AD et al (2013) An AT-hook domain in MeCP2 determines the clinical course of Rett syndrome and related disorders. Cell 152:984–996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Murata Y, Doi T, Taniguchi H, Fujiyoshi Y (2005) Proteomic analysis revealed a novel synaptic proline-rich membrane protein (PRR7) associated with PSD-95 and NMDA receptor. Biochem Biophys Res Commun 327:183–191

    Article  CAS  PubMed  Google Scholar 

  45. Sakurai T (2012) The role of NrCAM in neural development and disorders--beyond a simple glue in the brain. Mol Cell Neurosci 49:351–363

    Article  CAS  PubMed  Google Scholar 

  46. Weber JD, Gutmann DH (2012) Deconvoluting mTOR biology. Cell Cycle 11:236–248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Winham SJ, Cuellar-Barboza AB, McElroy SL et al (2014) Bipolar disorder with comorbid binge eating history: a genome-wide association study implicates APOB. J Affect Disord 165:151–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Qin M, Kang J, Smith CB (2002) Increased rates of cerebral glucose metabolism in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 99:15758–15763

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Besshoh S, Bawa D, Teves L et al (2005) Increased phosphorylation and redistribution of NMDA receptors between synaptic lipid rafts and post-synaptic densities following transient global ischemia in the rat brain. J Neurochem 93:186–194

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank to the patient’s parents for their continuous cooperation. We thank to Dr. V. Kalscheuer and Dr. U. Reinhard for their important work to help us to refine the translocation breakpoints and set up the LCLs. This work was supported by PROMEP (No. 103.5/11/4330), PAICYT (No. CS-927-11), and CONACYT (No. INFRA-2013-204423) for C Córdova-Fletes. I. Delint-Ramírez was supported by CONACYT (No. 180919). We also thank Dr. H. Rivera for his support to review this manuscript, and B. Verduzco-Garza, E.N. Garza-Treviño, and A. Camacho for their technical support/suggestions.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Córdova-Fletes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Córdova-Fletes, C., Domínguez, M.G., Delint-Ramirez, I. et al. A de novo t(10;19)(q22.3;q13.33) leads to ZMIZ1/PRR12 reciprocal fusion transcripts in a girl with intellectual disability and neuropsychiatric alterations. Neurogenetics 16, 287–298 (2015). https://doi.org/10.1007/s10048-015-0452-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-015-0452-2

Keywords

Navigation