Skip to main content

Advertisement

Log in

Milestones in Friedreich ataxia: more than a century and still learning

  • Review article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Friedreich ataxia (FRDA) is the most common autosomal recessive ataxia worldwide. This review highlights the main clinical features, pathophysiological mechanisms, and therapeutic approaches for FRDA patients. The disease is characterized by a combination of neurological involvement (ataxia and neuropathy), cardiomyopathy, skeletal abnormalities, and glucose metabolism disturbances. FRDA is caused by expanded guanine-adenine-adenine (GAA) triplet repeats in the first intron of the frataxin gene (FXN), resulting in reduction of messenger RNA and protein levels of frataxin in different tissues. The molecular and metabolic disturbances, including iron accumulation, lead to pathological changes characterized by spinal cord and dorsal root ganglia atrophy, dentate nucleus atrophy without global cerebellar volume reduction, and hypertrophic cardiomyopathy. DNA analysis is the hallmark for the diagnosis of FRDA. There is no specific treatment to stop the disease progression in FRDA patients. However, a number of drugs are under investigation. Therapeutic approaches intend to improve mitochondrial functioning and to increase FXN expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Delatycki MB, Corben LA (2012) Clinical features of Friedreich ataxia. J Child Neurol 27(9):1133–1137

    Article  PubMed Central  PubMed  Google Scholar 

  2. Parkinson MH, Boesch S, Nachbauer W, Mariotti C, Giunti P (2013) Clinical features of Friedreich’s ataxia: classical and atypical phenotypes. J Neurochem 126(Suppl 1):103–117

    Article  CAS  PubMed  Google Scholar 

  3. Koeppen AH (2011) Friedreich’s ataxia: pathology, pathogenesis, and molecular genetics. J Neurol Sci 303(1–2):1–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Schulz JB, Pandolfo M (2013) 150 years of Friedreich ataxia: from its discovery to therapy. J Neurochem 126:1–3

    Article  CAS  PubMed  Google Scholar 

  5. Harding AE (1981) Early onset cerebellar ataxia with retained tendon reflexes: a clinical and genetic study of a disorder distinct from Friedreich’s ataxia. J Neurol Neurosurg Psychiatry 44(6):503–508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Pandolfo M (2009) Friedreich ataxia: the clinical picture. J Neurol 256(S1):3–8

    Article  PubMed  Google Scholar 

  7. Dürr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C et al (1996) Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 335(16):1169–1175

    Article  PubMed  Google Scholar 

  8. Schöls L, Amoiridis G, Przuntek H, Frank G, Epplen JT, Epplen C (1997) Friedreich’s ataxia. Revision of the phenotype according to molecular genetics. Brain 120(Pt 12):2131–2140

    Article  PubMed  Google Scholar 

  9. Delatycki MB, Paris DB, Gardner RJ, Nicholson GA, Nassif N, Storey E et al (1999) Clinical and genetic study of Friedreich ataxia in an Australian population. Am J Med Genet 87(2):168–174

    Article  CAS  PubMed  Google Scholar 

  10. McCabe DJ, Ryan F, Moore DP, McQuaid S, King MD, Kelly A et al (2000) Typical Friedreich’s ataxia without GAA expansions and GAA expansion without typical Friedreich’s ataxia. J Neurol 247(5):346–355

    Article  CAS  PubMed  Google Scholar 

  11. Berciano J, Infante J, García A, Polo JM, Volpini V, Combarros O (2005) Very late-onset Friedreich’s ataxia with minimal GAA1 expansion mimicking multiple system atrophy of cerebellar type. Mov Disord 20(12):1643–1645

    Article  PubMed  Google Scholar 

  12. Galimanis A, Glutz L, Spiegel R, Burgunder J-M, Kaelin-Lang A (2008) Very-late-onset Friedreich ataxia with disturbing head tremor and without spinal atrophy—a case report. Mov Disord 23(7):1058–1059

    Article  PubMed  Google Scholar 

  13. Alvarez V, Arnold P, Kuntzer T (2013) Very late-onset Friedreich ataxia: later than life expectancy? J Neurol 260(5):1408–1409

    Article  PubMed  Google Scholar 

  14. Klockgether T, Zühlke C, Schulz JB, Bürk K, Fetter M, Dittmann H et al (1996) Friedreich’s ataxia with retained tendon reflexes: molecular genetics, clinical neurophysiology, and magnetic resonance imaging. Neurology 46(1):118–121

    Article  CAS  PubMed  Google Scholar 

  15. Coppola G, De Michele G, Cavalcanti F, Pianese L, Perretti A, Santoro L et al (1999) Why do some Friedreich’s ataxia patients retain tendon reflexes? A clinical, neurophysiological and molecular study. J Neurol 246(5):353–357

    Article  CAS  PubMed  Google Scholar 

  16. Pedroso JL, Braga-Neto P, Ricarte IF, Albuquerque MVC, Barsottini OGP (2013) Clinical spectrum of early onset cerebellar ataxia with retained tendon reflexes: an autosomal recessive ataxia not to be missed. Arq Neuropsiquiatr 71(6):345–348

    Article  PubMed  Google Scholar 

  17. Fahey MC, Corben L, Collins V, Churchyard AJ, Delatycki MB (2006) How is disease progress in Friedreich’s ataxia best measured? A study of four rating scales. J Neurol Neurosurg Psychiatry 78(4):411–413

    Article  PubMed Central  PubMed  Google Scholar 

  18. Bürk K, Schulz SR, Schulz JB (2013) Monitoring progression in Friedreich ataxia (FRDA): the use of clinical scales. J Neurochem 126:118–124

    Article  PubMed  Google Scholar 

  19. Campuzano V, Montermini L, Moltó MD, Pianese L, Cossee M, Cavalcanti F et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271(5254):1423–1427

    Article  CAS  PubMed  Google Scholar 

  20. Anheim M, Mariani L-L, Calvas P, Cheuret E, Zagnoli F, Odent S et al (2012) Exonic deletions of FXN and early-onset Friedreich ataxia. Arch Neurol 69(7):912–916

    PubMed  Google Scholar 

  21. Cossee M, Schmitt M, Campuzano V, Reutenauer L, Moutou C, Mandel JL et al (1997) Evolution of the Friedreich’s ataxia trinucleotide repeat expansion: founder effect and premutations. Proc Natl Acad Sci U S A 94(14):7452–7457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Pandolfo M, Pastore A (2009) The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J Neurol 256(S1):9–17

    Article  CAS  PubMed  Google Scholar 

  23. Pianese L, Turano M, Casale Lo MS, De Biase I, Giacchetti M, Monticelli A et al (2004) Real time PCR quantification of frataxin mRNA in the peripheral blood leucocytes of Friedreich ataxia patients and carriers. J Neurol Neurosurg Psychiatry 75(7):1061–1063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Plasterer HL, Deutsch EC, Belmonte M, Egan E, Lynch DR, Rusche JR (2013) Development of frataxin gene expression measures for the evaluation of experimental treatments in Friedreich’s ataxia. PLoS ONE 8(5):e63958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Koutnikova H, Campuzano V, Foury F, Dollé P, Cazzalini O, Koenig M (1997) Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nat Genet 16(4):345–351

    Article  CAS  PubMed  Google Scholar 

  26. Evans-Galea MV, Lockhart PJ, Galea CA, Hannan AJ, Delatycki MB (2014) Beyond loss of frataxin: the complex molecular pathology of Friedreich ataxia. Discov Med 17(91):25–35

    PubMed  Google Scholar 

  27. Bidichandani SI, Ashizawa T, Patel PI (1998) The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet 62(1):111–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ohshima K, Montermini L, Wells RD, Pandolfo M (1998) Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo. J Biol Chem 273(23):14588–14595

    Article  CAS  PubMed  Google Scholar 

  29. Grabczyk E, Usdin K (2000) The GAA*TTC triplet repeat expanded in Friedreich’s ataxia impedes transcription elongation by T7 RNA polymerase in a length and supercoil dependent manner. Nucleic Acids Res 28(14):2815–2822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Wells RD (2008) DNA triplexes and Friedreich ataxia. FASEB J 22(6):1625–1634

    Article  CAS  PubMed  Google Scholar 

  31. Grabczyk E, Mancuso M, Sammarco MC (2007) A persistent RNA.DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro. Nucleic Acids Res 35(16):5351–5359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Saveliev A, Everett C, Sharpe T, Webster Z, Festenstein R (2003) DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature 422(6934):909–913

    Article  CAS  PubMed  Google Scholar 

  33. Herman D, Jenssen K, Burnett R, Soragni E, Perlman SL, Gottesfeld JM (2006) Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat Chem Biol 2(10):551–558

    Article  CAS  PubMed  Google Scholar 

  34. Al-Mahdawi S, Pinto RM, Ismail O, Varshney D, Lymperi S, Sandi C et al (2008) The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum Mol Genet 17(5):735–746

    Article  CAS  PubMed  Google Scholar 

  35. Rai M, Soragni E, Jenssen K, Burnett R, Herman D, Coppola G et al (2008) HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS One 3(4):e1958

    Article  PubMed Central  PubMed  Google Scholar 

  36. Rai M, Soragni E, Chou CJ, Barnes G, Jones S, Rusche JR et al (2010) Two new pimelic diphenylamide HDAC inhibitors induce sustained frataxin upregulation in cells from Friedreich’s ataxia patients and in a mouse model. PLoS ONE 5(1):e8825

    Article  PubMed Central  PubMed  Google Scholar 

  37. De Biase I, Rasmussen A, Monticelli A, Al-Mahdawi S, Pook M, Cocozza S et al (2007) Somatic instability of the expanded GAA triplet-repeat sequence in Friedreich ataxia progresses throughout life. Genomics 90(1):1–5

    Article  PubMed  Google Scholar 

  38. Perdomini M, Hick A, Puccio H, Pook MA (2013) Animal and cellular models of Friedreich ataxia. J Neurochem 126:65–79

    Article  CAS  PubMed  Google Scholar 

  39. Martelli A, Puccio H (2014) Dysregulation of cellular iron metabolism in Friedreich ataxia: from primary iron-sulfur cluster deficit to mitochondrial iron accumulation. Front Pharmacol 5:130

    Article  PubMed Central  PubMed  Google Scholar 

  40. Rouault TA, Tong WH (2008) Iron-sulfur cluster biogenesis and human disease. Trends Genet 24(8):398–407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. De Castro M, García-Planells J, Monrós E, Cañizares J, Vázquez-Manrique R, Vílchez JJ et al (2000) Genotype and phenotype analysis of Friedreich’s ataxia compound heterozygous patients. Hum Genet 106(1):86–92

    Article  PubMed  Google Scholar 

  42. Xunclà M, Rodríguez-Revenga L, Madrigal I, Jiménez D, Milà M, Badenas C (2010) Protocol proposal for Friedreich ataxia molecular diagnosis using fluorescent and triplet repeat primed polymerase chain reaction. Transl Res 156(5):309–314

    Article  PubMed  Google Scholar 

  43. Muthuswamy S, Agarwal S, Dalal A (2013) Diagnosis and genetic counseling for Friedreich’s ataxia: a time for consideration of TP-PCR in an Indian setup. Hippokratia 17(1):38–41

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Ciotti P, Di Maria E, Bellone E, Ajmar F, Mandich P (2004) Triplet repeat primed PCR (TP PCR) in molecular diagnostic testing for Friedreich ataxia. J Mol Diagn 6(4):285–289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Tsou AY, Paulsen EK, Lagedrost SJ, Perlman SL, Mathews KD, Wilmot GR et al (2011) Mortality in Friedreich ataxia. J Neurol Sci 307(1–2):46–49

    Article  PubMed  Google Scholar 

  46. Mascalchi M (2013) The cerebellum looks normal in Friedreich ataxia. Am J Neuroradiol 34(2):E22

    Article  CAS  PubMed  Google Scholar 

  47. Mascalchi M, Salvi F, Piacentini S, Bartolozzi C (1994) Friedreich’s ataxia: MR findings involving the cervical portion of the spinal cord. AJR Am J Roentgenol 163(1):187–191

    Article  CAS  PubMed  Google Scholar 

  48. Chevis CF, da Silva CB, D’Abreu A, Lopes-Cendes I, Cendes F, Bergo FPG et al (2013) Spinal cord atrophy correlates with disability in Friedreich’s ataxia. Cerebellum 12(1):43–47

    Article  PubMed  Google Scholar 

  49. Della Nave R, Ginestroni A, Tessa C, Salvatore E, Bartolomei I, Salvi F et al (2008) Brain white matter tracts degeneration in Friedreich ataxia. An in vivo MRI study using tract-based spatial statistics and voxel-based morphometry. NeuroImage 40(1):19–25

    Article  PubMed  Google Scholar 

  50. Corben LA, Kashuk SR, Akhlaghi H, Jamadar S, Delatycki MB, Fielding J et al (2014) Myelin paucity of the superior cerebellar peduncle in individuals with Friedreich ataxia: an MRI magnetization transfer imaging study. J Neurol Sci 343(1–2):138–143

    Article  PubMed  Google Scholar 

  51. Bonilha da Silva C, Bergo FPG, D’Abreu A, Cendes F, Lopes-Cendes I, França MC (2014) Dentate nuclei T2 relaxometry is a reliable neuroimaging marker in Friedreich’s ataxia. Eur J Neurol 21(8):1131–1136

    Article  CAS  PubMed  Google Scholar 

  52. Solbach K, Kraff O, Minnerop M, Beck A, Schöls L, Gizewski ER et al (2014) Cerebellar pathology in Friedreich’s ataxia: atrophied dentate nuclei with normal iron content. NeuroImage Clin 6:93–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Synofzik M, Godau J, Lindig T, Schöls L, Berg D (2011) Transcranial sonography reveals cerebellar, nigral, and forebrain abnormalities in Friedreich’s ataxia. Neurodegener Dis 8(6):470–475

    Article  PubMed  Google Scholar 

  54. Akhlaghi H, Corben L, Georgiou-Karistianis N, Bradshaw J, Delatycki MB, Storey E et al (2012) A functional MRI study of motor dysfunction in Friedreich’s ataxia. Brain Res 1471:138–154

    Article  CAS  PubMed  Google Scholar 

  55. Gilman S, Junck L, Markel DS, Koeppe RA, Kluin KJ (1990) Cerebral glucose hypermetabolism in Friedreich’s ataxia detected with positron emission tomography. Ann Neurol 28(6):750–757

    Article  CAS  PubMed  Google Scholar 

  56. Strawser CJ, Schadt KA, Lynch DR (2014) Therapeutic approaches for the treatment of Friedreich’s ataxia. Expert Rev Neurother 14(8):949–957

    Article  PubMed  Google Scholar 

  57. Parkinson MH, Schulz JB, Giunti P (2013) Co-enzyme Q10 and idebenone use in Friedreich’s ataxia. J Neurochem 126(Suppl 1):125–141

    Article  CAS  PubMed  Google Scholar 

  58. Lodi R, Hart PE, Rajagopalan B, Taylor DJ, Crilley JG, Bradley JL et al (2001) Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich’s ataxia. Ann Neurol 49(5):590–596

    Article  CAS  PubMed  Google Scholar 

  59. Hart PE, Lodi R, Rajagopalan B, Bradley JL, Crilley JG, Turner C et al (2005) Antioxidant treatment of patients with Friedreich ataxia: four-year follow-up. Arch Neurol 62(4):621–626

    Article  PubMed  Google Scholar 

  60. Cooper JM, Korlipara LVP, Hart PE, Bradley JL, Schapira AHV (2008) Coenzyme Q 10 and vitamin E deficiency in Friedreich’s ataxia: predictor of efficacy of vitamin E and coenzyme Q 10 therapy. Eur J Neurol 15(12):1371–1379

    Article  CAS  PubMed  Google Scholar 

  61. Myers L, Farmer JM, Wilson RB, Friedman L, Tsou A, Perlman SL et al (2008) Antioxidant use in Friedreich ataxia. J Neurol Sci 267(1–2):174–176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Suno M, Nagaoka A (1984) Inhibition of lipid peroxidation by a novel compound, idebenone (CV-2619). Jpn J Pharmacol 35(2):196–198

    Article  CAS  PubMed  Google Scholar 

  63. Rustin P, Bonnet D, Rötig A, Munnich A, Sidi D (2004) Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology 62(3):524–525, author reply 525; discussion 525

    Article  PubMed  Google Scholar 

  64. Mariotti C, Solari A, Torta D, Marano L, Fiorentini C, Di Donato S (2003) Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology 60(10):1676–1679

    Article  CAS  PubMed  Google Scholar 

  65. Hausse AO, Aggoun Y, Bonnet D, Sidi D, Munnich A, Rötig A et al (2002) Idebenone and reduced cardiac hypertrophy in Friedreich’s ataxia. Heart 87(4):346–349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Buyse G, Mertens L, Di Salvo G, Matthijs I, Weidemann F, Eyskens B et al (2003) Idebenone treatment in Friedreich’s ataxia: neurological, cardiac, and biochemical monitoring. Neurology 60(10):1679–1681

    Article  CAS  PubMed  Google Scholar 

  67. Lagedrost SJ, Sutton MSJ, Cohen MS, Satou GM, Kaufman BD, Perlman SL et al (2011) Idebenone in Friedreich ataxia cardiomyopathy-results from a 6-month phase III study (IONIA). Am Heart J 161(3):639.e1–645.e1

    Article  Google Scholar 

  68. Artuch R, Aracil A, Mas A, Colome C, Rissech M, Monrós E et al (2002) Friedreich’s ataxia: idebenone treatment in early stage patients. Neuropediatrics 33(4):190–193

    Article  CAS  PubMed  Google Scholar 

  69. Pineda M, Arpa J, Montero R, Aracil A, Domínguez F, Galván M et al (2008) Idebenone treatment in paediatric and adult patients with Friedreich ataxia: long-term follow-up. Eur J Paediatr Neurol 12(6):470–475

    Article  PubMed  Google Scholar 

  70. Di Prospero NAN, Baker AA, Jeffries NN, Fischbeck KHK (2007) Neurological effects of high-dose idebenone in patients with Friedreich’s ataxia: a randomised, placebo-controlled trial. Lancet Neurol 6(10):878–886

    Article  PubMed  Google Scholar 

  71. Lynch DRD, Perlman SLS, Meier TT (2010) A phase 3, double-blind, placebo-controlled trial of idebenone in Friedreich ataxia. Arch Neurol 67(8):941–947

    PubMed  Google Scholar 

  72. Arpa J, Sanz-Gallego I, Rodríguez-de-Rivera FJ, Domínguez-Melcón FJ, Prefasi D, Oliva-Navarro J et al (2013) Triple therapy with darbepoetin alfa, idebenone, and riboflavin in Friedreich’s ataxia: an open-label trial. Cerebellum 12(5):713–720

    Article  CAS  PubMed  Google Scholar 

  73. Enns GM, Kinsman SL, Perlman SL, Spicer KM, Abdenur JE, Cohen BH et al (2012) Initial experience in the treatment of inherited mitochondrial disease with EPI-743. Mol Genet Metab 105(1):91–102

    Article  CAS  PubMed  Google Scholar 

  74. Pandolfo M, Hausmann L (2013) Deferiprone for the treatment of Friedreich’s ataxia. J Neurochem 126:142–146

    Article  CAS  PubMed  Google Scholar 

  75. Boddaert N, Le Quan Sang KH, Rötig A, Leroy-Willig A, Gallet S, Brunelle F et al (2007) Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 110(1):401–408

    Article  CAS  PubMed  Google Scholar 

  76. Sturm B, Stupphann D, Kaun C, Boesch S, Schranzhofer M, Wojta J et al (2005) Recombinant human erythropoietin: effects on frataxin expression in vitro. Eur J Clin Investig 35(11):711–717

    Article  CAS  Google Scholar 

  77. Boesch S, Sturm B, Hering S, Scheiber-Mojdehkar B, Steinkellner H, Goldenberg H et al (2008) Neurological effects of recombinant human erythropoietin in Friedreich’s ataxia: a clinical pilot trial. Mov Disord 23(13):1940–1944

    Article  PubMed  Google Scholar 

  78. Saccá F, Piro R, De Michele G, Acquaviva F, Antenora A, Carlomagno G et al (2011) Epoetin alfa increases frataxin production in Friedreich’s ataxia without affecting hematocrit. Mov Disord 26(4):739–742

    Article  PubMed  Google Scholar 

  79. Mariotti C, Fancellu R, Caldarazzo S, Nanetti L, Di Bella D, Plumari M et al (2012) Erythropoietin in Friedreich ataxia: no effect on frataxin in a randomized controlled trial. Mov Disord 27(3):446–449

    Article  CAS  PubMed  Google Scholar 

  80. Boesch S, Nachbauer W, Mariotti C, Saccá F, Filla A, Klockgether T et al (2014) Safety and tolerability of carbamylated erythropoietin in Friedreich’s ataxia. Mov Disord 29(7):935–939

    Article  CAS  PubMed  Google Scholar 

  81. Vyas PM, Tomamichel WJ, Pride PM, Babbey CM, Wang Q, Mercier J et al (2012) A TAT-frataxin fusion protein increases lifespan and cardiac function in a conditional Friedreich’s ataxia mouse model. Hum Mol Genet 21(6):1230–1247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Tomassini B, Arcuri G, Fortuni S, Sandi C, Ezzatizadeh V, Casali C et al (2012) Interferon gamma upregulates frataxin and corrects the functional deficits in a Friedreich ataxia model. Hum Mol Genet 21(13):2855–2861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Seyer L, Greeley N, Foerster D, Strawser C, Gelbard S, Dong Y et al (2014) Open-label pilot study of interferon gamma-1b in Friedreich ataxia. Acta Neurol Scand. doi:10.1111/ane.12337

    PubMed  Google Scholar 

  84. Chan PK, Torres R, Yandim C, Law PP, Khadayate S, Mauri M et al (2013) Heterochromatinization induced by GAA-repeat hyperexpansion in Friedreich’s ataxia can be reduced upon HDAC inhibition by vitamin B3. Hum Mol Genet 22(13):2662–2675

    Article  CAS  PubMed  Google Scholar 

  85. Libri V, Yandim C, Athanasopoulos S, Loyse N, Natisvili T, Law PP et al (2014) Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich’s ataxia: an exploratory, open-label, dose-escalation study. Lancet 384(9942):504–513

    Article  CAS  PubMed  Google Scholar 

  86. Perdomini M, Belbellaa B, Monassier L, Reutenauer L, Messaddeq N, Cartier N et al (2014) Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat Med 20(5):542–547

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Fundação de Amparo à Pesquisa de São Paulo, FAPESP 2012/17494-3, São Paulo, Brazil.

Conflict of interest

The authors state that they have no disclosures and no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agessandro Abrahão.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrahão, A., Pedroso, J.L., Braga-Neto, P. et al. Milestones in Friedreich ataxia: more than a century and still learning. Neurogenetics 16, 151–160 (2015). https://doi.org/10.1007/s10048-015-0439-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-015-0439-z

Keywords

Navigation