neurogenetics

, Volume 16, Issue 1, pp 1–9 | Cite as

Mutation in the novel nuclear-encoded mitochondrial protein CHCHD10 in a family with autosomal dominant mitochondrial myopathy

  • Senda Ajroud-Driss
  • Faisal Fecto
  • Kaouther Ajroud
  • Irfan Lalani
  • Sarah E. Calvo
  • Vamsi K. Mootha
  • Han-Xiang Deng
  • Nailah Siddique
  • Albert J. Tahmoush
  • Terry D. Heiman-Patterson
  • Teepu Siddique
Original Article

Abstract

Mitochondrial myopathies belong to a larger group of systemic diseases caused by morphological or biochemical abnormalities of mitochondria. Mitochondrial disorders can be caused by mutations in either the mitochondrial or nuclear genome. Only 5 % of all mitochondrial disorders are autosomal dominant. We analyzed DNA from members of the previously reported Puerto Rican kindred with an autosomal dominant mitochondrial myopathy (Heimann-Patterson et al. 1997). Linkage analysis suggested a putative locus on the pericentric region of the long arm of chromosome 22 (22q11). Using the tools of integrative genomics, we established chromosome 22 open reading frame 16 (C22orf16) (later designated as CHCHD10) as the only high-scoring mitochondrial candidate gene in our minimal candidate region. Sequence analysis revealed a double-missense mutation (R15S and G58R) in cis in CHCHD10 which encodes a coiled coil-helix-coiled coil-helix protein of unknown function. These two mutations completely co-segregated with the disease phenotype and were absent in 1,481 Caucasian and 80 Hispanic (including 32 Puerto Rican) controls. Expression profiling showed that CHCHD10 is enriched in skeletal muscle. Mitochondrial localization of the CHCHD10 protein was confirmed using immunofluorescence in cells expressing either wild-type or mutant CHCHD10. We found that the expression of the G58R, but not the R15S, mutation induced mitochondrial fragmentation. Our findings identify a novel gene causing mitochondrial myopathy, thereby expanding the spectrum of mitochondrial myopathies caused by nuclear genes. Our findings also suggest a role for CHCHD10 in the morphologic remodeling of the mitochondria.

Keywords

Mitochondrial myopathy Genetics CHCHD10 Mitochondria 

Supplementary material

10048_2014_421_MOESM1_ESM.docx (3.5 mb)
Supplementary Figure 1(DOCX 3591 kb)
10048_2014_421_MOESM2_ESM.docx (230 kb)
Supplementary Figure 2(DOCX 229 kb)
10048_2014_421_MOESM3_ESM.docx (79 kb)
Supplementary Figure 3(DOCX 78 kb)
10048_2014_421_MOESM4_ESM.docx (349 kb)
Supplementary Figure 4(DOCX 349 kb)
10048_2014_421_MOESM5_ESM.docx (22 kb)
Supplementary Table 1(DOCX 21 kb)
10048_2014_421_MOESM6_ESM.docx (19 kb)
Supplementary Table 2(DOCX 18 kb)

References

  1. 1.
    Debray FG, Lambert M, Mitchell GA (2008) Disorders of mitochondrial function. Curr Opin Pediatr 20:471–482PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465PubMedCrossRefGoogle Scholar
  3. 3.
    Lopez MF, Kristal BS, Chernokalskaya E, Lazarev A, Shestopalov AI, Bogdanova A, Robinson M (2000) High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis 21:3427–3440PubMedCrossRefGoogle Scholar
  4. 4.
    DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656–2668PubMedCrossRefGoogle Scholar
  5. 5.
    Milone M, Benarroch EE (2012) Mitochondrial dynamics: general concepts and clinical implications. Neurology 78:1612–1619PubMedCrossRefGoogle Scholar
  6. 6.
    Ajroud-Driss S, Fecto F, Ajroud K, Siddique T (2012) Mutations in the nuclear encoded novel mitochondrial protein CHCHD10 cause an autosomal dominant mitochondrial myopathy. Neurology 78Google Scholar
  7. 7.
    Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, Gibbs RA, Hurles ME, McVean GA (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073PubMedCrossRefGoogle Scholar
  8. 8.
    Heiman-Patterson TD, Argov Z, Chavin JM, Kalman B, Alder H, DiMauro S, Bank W, Tahmoush AJ (1997) Biochemical and genetic studies in a family with mitochondrial myopathy. Muscle Nerve 20:1219–1224PubMedCrossRefGoogle Scholar
  9. 9.
    Dagda RK, Cherra SJ 3rd, Kulich SM, Tandon A, Park D, Chu CT (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284:13843–13855PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, Yang Y, Fecto F, Shi Y, Zhai H et al (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477:211–215PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, Walford GA, Sugiana C, Boneh A, Chen WK et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786PubMedCrossRefGoogle Scholar
  13. 13.
    Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR et al (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225–229PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Baughman JM, Nilsson R, Gohil VM, Arlow DH, Gauhar Z, Mootha VK (2009) A computational screen for regulators of oxidative phosphorylation implicates SLIRP in mitochondrial RNA homeostasis. PLoS Genet 5:e1000590PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Martherus RS, Sluiter W, Timmer ED, VanHerle SJ, Smeets HJ, Ayoubi TA (2010) Functional annotation of heart enriched mitochondrial genes GBAS and CHCHD10 through guilt by association. Biochem Biophys Res Commun 402:203–208PubMedCrossRefGoogle Scholar
  16. 16.
    Schug J, Schuller WP, Kappen C, Salbaum JM, Bucan M, Stoeckert CJ Jr (2005) Promoter features related to tissue specificity as measured by Shannon entropy. Genome Biol 6:R33PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Roth RB, Hevezi P, Lee J, Willhite D, Lechner SM, Foster AC, Zlotnik A (2006) Gene expression analyses reveal molecular relationships among 20 regions of the human CNS. Neurogenetics 7:67–80PubMedCrossRefGoogle Scholar
  18. 18.
    Darshi M, Mendiola VL, Mackey MR, Murphy AN, Koller A, Perkins GA, Ellisman MH, Taylor SS (2011) ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function. J Biol Chem 286:2918–2932PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Milone M, Wong LJ (2013) Diagnosis of mitochondrial myopathies. Mol Genet Metab 110:35–41PubMedCrossRefGoogle Scholar
  20. 20.
    Bannwarth S, Ait-El-Mkadem S, Chaussenot A, Genin EC, Lacas-Gervais S, Fragaki K, Berg-Alonso L, Kageyama Y, Serre V, Moore DG et al (2014) A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain 137:2329–2345PubMedCrossRefGoogle Scholar
  21. 21.
    Herrmann JM, Kohl R (2007) Catch me if you can! Oxidative protein trapping in the intermembrane space of mitochondria. J Cell Biol 176:559–563PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Longen S, Bien M, Bihlmaier K, Kloeppel C, Kauff F, Hammermeister M, Westermann B, Herrmann JM, Riemer J (2009) Systematic analysis of the twin cx(9)c protein family. J Mol Biol 393:356–368PubMedCrossRefGoogle Scholar
  23. 23.
    Banci L, Bertini I, Ciofi-Baffoni S, Tokatlidis K (2009) The coiled coil-helix-coiled coil-helix proteins may be redox proteins. FEBS Lett 583:1699–1702PubMedCrossRefGoogle Scholar
  24. 24.
    Cavallaro G (2010) Genome-wide analysis of eukaryotic twin CX9C proteins. Mol BioSyst 6:2459–2470PubMedCrossRefGoogle Scholar
  25. 25.
    An J, Shi J, He Q, Lui K, Liu Y, Huang Y, Sheikh MS (2012) CHCM1/CHCHD6, novel mitochondrial protein linked to regulation of mitofilin and mitochondrial cristae morphology. J Biol Chem 287:7411–7426PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Senda Ajroud-Driss
    • 1
  • Faisal Fecto
    • 1
  • Kaouther Ajroud
    • 1
  • Irfan Lalani
    • 1
  • Sarah E. Calvo
    • 4
    • 5
    • 6
    • 7
  • Vamsi K. Mootha
    • 4
    • 5
    • 6
    • 7
  • Han-Xiang Deng
    • 1
  • Nailah Siddique
    • 1
  • Albert J. Tahmoush
    • 8
    • 9
  • Terry D. Heiman-Patterson
    • 8
    • 10
  • Teepu Siddique
    • 1
    • 2
    • 3
  1. 1.Division of Neuromuscular Medicine, The Ken and Ruth Davee Department of Neurology and Clinical Neurosciences, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  2. 2.Interdepartmental Neuroscience ProgramNorthwestern UniversityChicagoUSA
  3. 3.Department of Cell and Molecular Biology, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  4. 4.Howard Hughes Medical InstituteChevy ChaseUSA
  5. 5.Department of Molecular BiologyMassachusetts General HospitalBostonUSA
  6. 6.Department of Systems BiologyHarvard Medical SchoolBostonUSA
  7. 7.Broad InstituteCambridgeUSA
  8. 8.Department of NeurologyThomas Jefferson UniversityPhiladelphiaUSA
  9. 9.APG NeurologyAtlantiCare Physician GroupEgg Harbor TownshipUSA
  10. 10.Department of Neurology, College of MedicineDrexel UniversityPhiladelphiaUSA

Personalised recommendations