Skip to main content
Log in

Genetic variants in IL2RA and IL7R affect multiple sclerosis disease risk and progression

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a common demyelinating neurodegenerative disease with a strong genetic component. Previous studies have associated genetic variants in IL2RA and IL7R in the pathophysiology of the disease. In this study, we describe the association between IL2RA (rs2104286) and IL7R (rs6897932) in the Canadian population. Genotyping 1,978 MS patients and 830 controls failed to identify any significant association between these variants and disease risk. However, stratified analysis for family history of disease and disease course identified a trend towards association for IL2RA in patients without a family history (p = 0.05; odds ratio = 0.77) and a significant association between IL7R and patients who developed progressive MS (PrMS) (p = 0.002; odds ratio = 0.73). Although not statistically significant, the effect of IL2RA (rs2104286) in patients without a family history of MS indicates that the genetic components for familial and sporadic disease are perhaps distinct. This data suggests that the onset of sporadic disease is likely determined by a large number of variants of small effect, whereas MS in patients with a family history of disease is caused by a few deleterious variants. In addition, the significant association between PrMS and rs6897932 indicates that IL7R may not be disease-causing but a determinant of disease course. Further characterization of the effect of IL2RA and IL7R genetic variants in defined MS subtypes is warranted to evaluate the effect of these genes on specific clinical outcomes and to further elucidate the mechanisms of disease onset and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wade BJ (2014) Spatial analysis of global prevalence of multiple sclerosis suggests need for an updated prevalence scale. Mult Scler Int 2014:124578. doi:10.1155/2014/124578

    Article  PubMed Central  PubMed  Google Scholar 

  2. Ebers GC (2008) Environmental factors and multiple sclerosis. Lancet Neurol 7(3):268–277

    Article  PubMed  Google Scholar 

  3. Noseworthy JH (1999) Progress in determining the causes and treatment of multiple sclerosis. Nature 399(6738 Suppl):A40–A47

    Article  CAS  PubMed  Google Scholar 

  4. Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476(7359):214–219. doi:10.1038/nature10251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A, Cotsapas C et al (2013) Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 45(11):1353–1360. doi:10.1038/ng.2770

    Article  CAS  PubMed  Google Scholar 

  6. Gregory SG, Schmidt S, Seth P, Oksenberg JR, Hart J, Prokop A et al (2007) Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat Genet 39(9):1083–1091. doi:10.1038/ng2103

    Article  CAS  PubMed  Google Scholar 

  7. Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL et al (2007) Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 357(9):851–862. doi:10.1056/NEJMoa073493

    Article  CAS  PubMed  Google Scholar 

  8. Wang LM, Zhang DM, Xu YM, Sun SL (2011) Interleukin 2 receptor alpha gene polymorphism and risk of multiple sclerosis: a meta-analysis. J Int Med Res 39(5):1625–1635

    Article  CAS  PubMed  Google Scholar 

  9. Zhang R, Duan L, Jiang Y, Zhang X, Sun P, Li J, Zhang M, Tang G, Wang X, Li X (2011) Association between the IL7R T244I polymorphism and multiple sclerosis: a meta-analysis. Mol Biol Rep 38(8):5079–5084. doi:10.1007/s11033-010-0654-5

    Article  CAS  PubMed  Google Scholar 

  10. Hoppenbrouwers IA, Aulchenko YS, Janssens AC, Ramagopalan SV, Broer L, Kayser M, Ebers GC, Oostra BA, van Duijn CM, Hintzen RQ (2009) Replication of CD58 and CLEC16A as genome-wide significant risk genes for multiple sclerosis. J Hum Genet 54(11):676–680. doi:10.1038/jhg.2009.96

    Article  CAS  PubMed  Google Scholar 

  11. Akkad DA, Hoffjan S, Petrasch-Parwez E, Beygo J, Gold R, Epplen JT (2009) Variation in the IL7RA and IL2RA genes in German multiple sclerosis patients. J Autoimmun 32(2):110–115. doi:10.1016/j.jaut.2009.01.002

    Article  CAS  PubMed  Google Scholar 

  12. Sadovnick AD, Risch NJ, Ebers GC (1998) Canadian collaborative project on genetic susceptibility to MS, phase 2: rationale and method. Canadian Collaborative Study Group. Can J Neurol Sci 25(3):216–221

    CAS  PubMed  Google Scholar 

  13. Poser CM, Paty DW, Scheinberg L, McDonald WI, Davis FA, Ebers GC, Johnson KP, Sibley WA, Silberberg DH, Tourtellotte WW (1983) New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 13(3):227–231. doi:10.1002/ana.410130302

    Article  CAS  PubMed  Google Scholar 

  14. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Ann Neurol 50(1):121–127

    Article  CAS  PubMed  Google Scholar 

  15. Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, Lublin FD, Metz LM, McFarland HF, O'Connor PW, Sandberg-Wollheim M, Thompson AJ, Weinshenker BG, Wolinsky JS (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 58(6):840–846. doi:10.1002/ana.20703

    Article  PubMed  Google Scholar 

  16. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33(11):1444–1452

    Article  CAS  PubMed  Google Scholar 

  17. Trinh J, Vilarino-Guell C, Donald A, Shah B, Yu I, Szu-Tu C, Aasly JO, Wu RM, Hentati F, Rajput AH, Rajput A, Farrer MJ (2013) STX6 rs1411478 is not associated with increased risk of Parkinson's disease. Parkinsonism Relat Disord 19(5):563–565. doi:10.1016/j.parkreldis.2013.01.019

    Article  PubMed  Google Scholar 

  18. Jiang Q, Li WQ, Aiello FB, Mazzucchelli R, Asefa B, Khaled AR, Durum SK (2005) Cell biology of IL-7, a key lymphotrophin. Cytokine Growth Factor Rev 16(4–5):513–533

    Article  CAS  PubMed  Google Scholar 

  19. Malek TR, Bayer AL (2004) Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 4(9):665–674. doi:10.1038/nri1435

    Article  CAS  PubMed  Google Scholar 

  20. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ et al (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753. doi:10.1038/nature08494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Booth DR, Arthur AT, Teutsch SM, Bye C, Rubio J, Armati PJ, Pollard JD, Heard RN, Stewart GJ (2005) Gene expression and genotyping studies implicate the interleukin 7 receptor in the pathogenesis of primary progressive multiple sclerosis. J Mol Med (Berlin) 83(10):822–830. doi:10.1007/s00109-005-0684-y

    Article  CAS  Google Scholar 

  22. Lundmark F, Duvefelt K, Iacobaeus E, Kockum I, Wallstrom E, Khademi M, Oturai A, Ryder LP, Saarela J, Harbo HF, Celius EG, Salter H, Olsson T, Hillert J (2007) Variation in interleukin 7 receptor alpha chain (IL7R) influences risk of multiple sclerosis. Nat Genet 39(9):1108–1113

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Z, Duvefelt K, Svensson F, Masterman T, Jonasdottir G, Salter H, Emahazion T, Hellgren D, Falk G, Olsson T, Hillert J, Anvret M (2005) Two genes encoding immune-regulatory molecules (LAG3 and IL7R) confer susceptibility to multiple sclerosis. Genes Immunol 6(2):145–152

    Article  CAS  Google Scholar 

  24. Qiu W, Pham K, James I, Nolan D, Castley A, Christiansen FT, Czarniak P, Luo Y, Wu J, Garlepp M, Wilton S, Carroll WM, Mastaglia FL, Kermode AG (2013) The influence of non-HLA gene polymorphisms and interactions on disease risk in a Western Australian multiple sclerosis cohort. J Neuroimmunol 261(1–2):92–97. doi:10.1016/j.jneuroim.2013.04.022

    Article  CAS  PubMed  Google Scholar 

  25. O'Doherty C, Kantarci O, Vandenbroeck K (2008) IL7RA polymorphisms and susceptibility to multiple sclerosis. N Engl J Med 358(7):753–754. doi:10.1056/NEJMc0707553

    Article  PubMed  Google Scholar 

  26. McKay FC, Swain LI, Schibeci SD, Rubio JP, Kilpatrick TJ, Heard RN, Stewart GJ, Booth DR (2008) CD127 immunophenotyping suggests altered CD4+ T cell regulation in primary progressive multiple sclerosis. J Autoimmun 31(1):52–58. doi:10.1016/j.jaut.2008.02.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all individuals who generously participated in this study. We thank Kevin Atkins for data collection and extraction. This research was undertaken thanks to funding from the Canada Research Chair and Canada Excellence Research Chair programs, Vancouver Costal Heath Research Institute, and the Milan & Maureen Ilich Foundation. Collection of clinical information and DNA samples was funded by the MS Society of Canada Scientific Research Foundation as part of the CCPGSMS.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carles Vilariño-Güell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Traboulsee, A.L., Bernales, C.Q., Ross, J.P. et al. Genetic variants in IL2RA and IL7R affect multiple sclerosis disease risk and progression. Neurogenetics 15, 165–169 (2014). https://doi.org/10.1007/s10048-014-0403-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-014-0403-3

Keywords

Navigation