Differentially expressed genes in hypothalamus in relation to genomic regions under selection in two chicken lines resulting from divergent selection for high or low body weight


Long-term divergent selection for low or high body weight from the same founder population has generated two extremely divergent lines of chickens, the high- (HWS) and low-weight (LWS) selected lines. At selection age (56 days), the lines differ by more than nine times in body weight. The HWS line chickens are compulsive feeders, whereas in the LWS line, some individuals are anorexic and others have very low appetite. Previous studies have implicated the central nervous system and particularly the hypothalamus in these behavioural differences. Here, we compared the mRNA expression in hypothalamus tissue from chickens on day 4 post-hatch using oligonucleotide arrays and found that the divergent selection had resulted in minor but multiple expression differences. Differentially expressed genes were enriched in processes ‘DNA metabolism, repair, induction of apoptosis and metabolism’. Several differentially expressed genes participate in the regulation of neuronal plasticity and development, including apoptosis, or are neurotransmittor receptor subtypes. Less change was seen when comparing hypothalamic neuropeptide mediators of appetite such as the melanocortin receptors. The genomic locations of these differentially expressed genes were then compared to the locations of growth QTLs and to a genome-wide map of chromosomal regions that have been under divergent selection between the lines. The results indicate which differentially expressed hypothalamic genes have responded to the divergent selection and that the results predict that it is more likely to find causative genes among these most differentially expressed genes. Because of such differential gene expression in hypothalamus, the lines may adapt behaviourally different particularly to the post-hatch situation when independent feeding to obtain energy is established.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Siegel PB, Wisman EL (1966) Selection for body weight at eight weeks of age. 6. Changes of appetite and feed utalization. Poult Sci 45:1391–1397

    Google Scholar 

  2. 2.

    Dunnington EA, Siegel PB (1996) Long-term divergent selection for eight-week body weight in white Plymouth rock chickens. Poult Sci 75:1168–1179

    PubMed  CAS  Google Scholar 

  3. 3.

    Marquez GC, Siegel PB, Lewis RM (2010) Genetic diversity and population structure in lines of chickens divergently selected for high and low 8-week body weight. Poult Sci 89:2580–2588

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Calabotta DF, Cherry JA, Siegel PB, Jones DE (1985) Lipogenesis and lipolysis in fed and fasted chicks from high and low body weight lines. Poult Sci 64:700–704

    PubMed  CAS  Google Scholar 

  5. 5.

    Denbow DM, Van Krey HP, Siegel PB (1986) Selection for growth alters the feeding response to injections of biogenic amines. Pharmacol Biochem Behav 24:39–42

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Kuo AY, Lee JC, Magnin G, Siegel PB, Denbow DM (2006) Differential autonomic nervous system response in obese and anorexic chickens (Gallus gallus). Comp Biochem Physiol B Biochem Mol Biol 144:359–364

    PubMed  Article  Google Scholar 

  7. 7.

    Burkhart CA, Cherry JA, Van Krey HP, Siegel PB (1983) Genetic selection for growth rate alters hypothalamic satiety mechanisms in chickens. Behav Genet 13:295–300

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Cline MA, Nandar W, Bowden C, Hein PP, Denbow DM, Siegel PB (2008) Differential feeding responses to central alpha melanocyte stimulating hormone in genetically low and high body weight selected lines of chickens. Life Sciences 83:208–213

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Cline MA, Prall BC, Smith ML, Calchary WA, Siegel PB (2008) Differential appetite-related responses to central neuropeptide S in lines of chickens divergently selected for low or high body weight. J Neuroendocrinol 20:904–908

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Jacobsson L, Park HB, Wahlberg P, Fredriksson R, Perez-Enciso M, Siegel PB, Andersson L (2005) Many QTLs with minor additive effects are associated with a large difference in growth between two selection lines in chickens. Genet Res 86:115–125

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Park HB, Jacobsson L, Wahlberg P, Siegel PB, Andersson L (2006) QTL analysis of body composition and metabolic traits in an intercross between chicken lines divergently selected for growth. Physiol Genomics 25:216–223

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Wahlberg P, Carlborg O, Foglio M, Tordoir X, Syvanen AC, Lathrop M, Gut IG, Siegel PB, Andersson L (2009) Genetic analysis of an F(2) intercross between two chicken lines divergently selected for body-weight. BMC Genomics 10:248

    PubMed  Article  Google Scholar 

  13. 13.

    Carlborg O, Jacobsson L, Ahgren P, Siegel P, Andersson L (2006) Epistasis and the release of genetic variation during long-term selection. Nat Genet 38:418–420

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Johansson AM, Pettersson ME, Siegel PB, Carlborg O (2010) Genome-wide effects of long-term divergent selection. PLoS Genet 6:e1001188

    PubMed  Article  Google Scholar 

  15. 15.

    Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    PubMed  Article  Google Scholar 

  16. 16.

    Liu WM, Mei R, Di X, Ryder TB, Hubbell E, Dee S, Webster TA, Harrington CA, Ho MH, Baid J, Smeekens SP (2002) Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics 18:1593–1599

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE, Myers RM, Speed TP, Akil H, Watson SJ, Meng F (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33:e175

    PubMed  Article  Google Scholar 

  18. 18.

    Prufer K, Muetzel B, Do HH, Weiss G, Khaitovich P, Rahm E, Paabo S, Lachmann M, Enard W (2007) FUNC: a package for detecting significant associations between gene sets and ontological annotations. BMC Bioinforma 8:41

    Article  Google Scholar 

  19. 19.

    Ka S, Kerje S, Bornold L, Liljegren U, Siegel PB, Andersson L, Hallböök F (2009) Proviral integrations and expression of endogenous Avian leucosis virus during long term selection for high and low body weight in two chicken lines. Retrovirology 6:68

    PubMed  Article  Google Scholar 

  20. 20.

    Ka S, Lindberg J, Stromstedt L, Fitzsimmons C, Lindqvist N, Lundeberg J, Siegel PB, Andersson L, Hallbook F (2009) Extremely different behaviours in high and low body weight lines of chicken are associated with differential expression of genes involved in neuronal plasticity. J Neuroendocrinol 21:208–216

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Kumari S, Verma LK, Weller JW (2007) AffyMAPSDetector: a software tool to characterize Affymetrix GeneChip expression arrays with respect to SNPs. BMC Bioinforma 8:276

    Article  Google Scholar 

  22. 22.

    Wong GK, Liu B, Wang J, Zhang Y, Yang X, Zhang Z, Meng Q, Zhou J, Li D, Zhang J, Ni P, Li S, Ran L, Li H, Zhang J, Li R, Li S, Zheng H, Lin W, Li G, Wang X, Zhao W, Li J, Ye C, Dai M, Ruan J, Zhou Y, Li Y, He X, Zhang Y, Wang J, Huang X, Tong W, Chen J, Ye J, Chen C, Wei N, Li G, Dong L, Lan F, Sun Y, Zhang Z, Yang Z, Yu Y, Huang Y, He D, Xi Y, Wei D, Qi Q, Li W, Shi J, Wang M, Xie F, Wang J, Zhang X, Wang P, Zhao Y, Li N, Yang N, Dong W, Hu S, Zeng C, Zheng W, Hao B, Hillier LW, Yang SP, Warren WC, Wilson RK, Brandstrom M, Ellegren H, Crooijmans RP, van der Poel JJ, Bovenhuis H, Groenen MA, Ovcharenko I, Gordon L, Stubbs L, Lucas S, Glavina T, Aerts A, Kaiser P, Rothwell L, Young JR, Rogers S, Walker BA, van Hateren A, Kaufman J, Bumstead N, Lamont SJ, Zhou H, Hocking PM, Morrice D, de Koning DJ, Law A, Bartley N, Burt DW, Hunt H, Cheng HH, Gunnarsson U, Wahlberg P, Andersson L, Kindlund E, Tammi MT, Andersson B, Webber C, Ponting CP, Overton IM, Boardman PE, Tang H, Hubbard SJ, Wilson SA, Yu J, Wang J, Yang H (2004) A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature 432:717–722

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Cingolani LA, Goda Y (2008) Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 9:344–356

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Luo L (2002) Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu Rev Cell Dev Biol 18:601–635

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Sfakianos MK, Eisman A, Gourley SL, Bradley WD, Scheetz AJ, Settleman J, Taylor JR, Greer CA, Williamson A, Koleske AJ (2007) Inhibition of Rho via Arg and p190RhoGAP in the postnatal mouse hippocampus regulates dendritic spine maturation, synapse and dendrite stability, and behavior. J Neurosci 27:10982–10992

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Melnick I, Pronchuk N, Cowley MA, Grove KL, Colmers WF (2007) Developmental switch in neuropeptide Y and melanocortin effects in the paraventricular nucleus of the hypothalamus. Neuron 56:1103–1115

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    D'Amelio M, Cavallucci V, Cecconi F (2010) Neuronal caspase-3 signaling: not only cell death. Cell Death Differ 17:1104–1114

    PubMed  Article  Google Scholar 

  28. 28.

    Waters EM, Simerly RB (2009) Estrogen induces caspase-dependent cell death during hypothalamic development. J Neurosci 29:9714–9718

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Li Z, Jo J, Jia JM, Lo SC, Whitcomb DJ, Jiao S, Cho K, Sheng M (2010) Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 141:859–871

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Mercader JM, Lozano JJ, Sumoy L, Dierssen M, Visa J, Gratacos M, Estivill X (2008) Hypothalamus transcriptome profile suggests an anorexia-cachexia syndrome in the anx/anx mouse model. Physiol Genomics 35:341–350

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Nilsson IA, Thams S, Lindfors C, Bergstrand A, Cullheim S, Hokfelt T, Johansen JE (2011) Evidence of hypothalamic degeneration in the anorectic anx/anx mouse. Glia 59:45–57

    PubMed  Article  Google Scholar 

  32. 32.

    McCarthy S, Mottagui-Tabar S, Mizuno Y, Sennblad B, Hoffstedt J, Arner P, Wahlestedt C, Andersson B (2005) Complex HTR2C linkage disequilibrium and promoter associations with body mass index and serum leptin. Hum Genet 117:545–557

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Westberg L, Bah J, Rastam M, Gillberg C, Wentz E, Melke J, Hellstrand M, Eriksson E (2002) Association between a polymorphism of the 5-HT2C receptor and weight loss in teenage girls. Neuropsychopharmacology 26:789–793

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3:728–739

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Wang DD, Kriegstein AR (2009) Defining the role of GABA in cortical development. J Physiol 587:1873–1879

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Hollon TR, Bek MJ, Lachowicz JE, Ariano MA, Mezey E, Ramachandran R, Wersinger SR, Soares-da-Silva P, Liu ZF, Grinberg A, Drago J, Young WS 3rd, Westphal H, Jose PA, Sibley DR (2002) Mice lacking D5 dopamine receptors have increased sympathetic tone and are hypertensive. J Neurosci 22:10801–10810

    PubMed  CAS  Google Scholar 

  37. 37.

    Kuo AY, Lee JC, Siegel PB, Denbow DM (2001) Differential cardiovascular effects of pharmacological agents in chickens selected for high and low body weight. Physiol Behav 74:573–579

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Higgins SE, Ellestad LE, Trakooljul N, McCarthy F, Saliba J, Cogburn LA, Porter TE (2010) Transcriptional and pathway analysis in the hypothalamus of newly hatched chicks during fasting and delayed feeding. BMC Genomics 11:162

    PubMed  Article  Google Scholar 

  39. 39.

    Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, Williams T, Ferreira M, Tang V, McGovern RA, Kenny CD, Christiansen LM, Edelstein E, Choi B, Boss O, Aschkenasi C, Zhang CY, Mountjoy K, Kishi T, Elmquist JK, Lowell BB (2005) Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123:493–505

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Chen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan XM, Yu H, Rosenblum CI, Vongs A, Feng Y, Cao L, Metzger JM, Strack AM, Camacho RE, Mellin TN, Nunes CN, Min W, Fisher J, Gopal-Truter S, MacIntyre DE, Chen HY, Van der Ploeg LH (2000) Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet 26:97–102

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Chan LF, Webb TR, Chung TT, Meimaridou E, Cooray SN, Guasti L, Chapple JP, Egertova M, Elphick MR, Cheetham ME, Metherell LA, Clark AJ (2009) MRAP and MRAP2 are bidirectional regulators of the melanocortin receptor family. Proc Natl Acad Sci U S A 106:6146–6151

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Byerly MS, Simon J, Cogburn LA, Le Bihan-Duval E, Duclos MJ, Aggrey SE, Porter TE (2010) Transcriptional profiling of hypothalamus during development of adiposity in genetically selected fat and lean chickens. Physiol Genomics 42:157–167

    PubMed  Article  CAS  Google Scholar 

Download references


Thanks to Carl-Johan Rubin for the helpful discussions about the data analysis and to Carolyn Fitzsimmons, Lina Strömstedt and Niclas Lindqvist for taking part in the early parts of the project; Frank Lee, David Sandberg and Tina Ghelani for the assistance with qRT-PCR analyses.


This study was funded by Swedish Research Council (20859-01-3, 12187-15-3), FORMAS and the Swedish Foundation for Strategic Research (SFF).

Author information



Corresponding author

Correspondence to Finn Hallböök.

Electronic Supplementary Materials

Additional supplementary information may be found in the online version of this article:


(PDF 511 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ka, S., Albert, F.W., Denbow, D.M. et al. Differentially expressed genes in hypothalamus in relation to genomic regions under selection in two chicken lines resulting from divergent selection for high or low body weight. Neurogenetics 12, 211 (2011). https://doi.org/10.1007/s10048-011-0290-9

Download citation


  • Anorexia
  • Body weight
  • Chicken
  • Divergent selection
  • Feeding behaviour
  • Gene expression
  • Hypothalamus