Skip to main content
Log in

Leucine-rich repeat kinase 1: a paralog of LRRK2 and a candidate gene for Parkinson’s disease

  • Original Article
  • Published:
Neurogenetics Aims and scope Submit manuscript

Abstract

Leucine-rich repeat kinase 1 gene (LRRK1) on chromosome 15q26.3 is a paralog of LRRK2 in which multiple substitutions were recently linked to Parkinson’s disease. We have examined the exon–intron structure of the gene and the expressed mRNA sequence in brain. LRRK1 sequencing analysis in 95 probands from families with autosomal dominant Parkinson’s disease identified 23 variants, 14 of which are novel, with four resulting in non-synonymous amino acid substitutions. These four substitutions are rare and do not clearly segregate with disease within our families or associate with sporadic Parkinson’s disease in a US case-control series. Subsequent sequencing of exon 26 encoding the kinase activation segment in an additional 360 probands identified one further synonymous variant, suggesting that LRRK1 variants are not a frequent cause of Parkinson’s disease. The relative absence of substitutions within LRRK1 highlights a greater conservation of sequence than observed for LRRK2. Comparison of evolutionary interspecies sequences of LRRK1 and LRRK2 suggests they diverged from a common founder gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Berg D, Schweitzer K, Leitner P, Zimprich A, Lichtner P, Belcredi P, Brussel T, Schulte C, Maass S, Nagele T (2005) Type and frequency of mutations in the LRRK2 gene in familial and sporadic Parkinson’s disease. Brain 128:3000–3011

    PubMed  Google Scholar 

  2. Chen S, Spiegelberg BD, Lin F, Dell EJ, Hamm HE (2004) Interaction of Gbetagamma with RACK1 and other WD40 repeat proteins. J Mol Cell Cardiol 37:399–406

    Article  PubMed  CAS  Google Scholar 

  3. Cruts M, van Duijn CM, Backhovens H, Van den Broeck M, Wehnert A, Serneels S, Sherrington R, Hutton M, Hardy J, St George-Hyslop PH, Hofman A, Van Broeckhoven C (1998) Estimation of the genetic contribution of presenilin-1 and -2 mutations in a population-based study of presenile Alzheimer disease. Hum Mol Genet 7:43–51

    Article  PubMed  CAS  Google Scholar 

  4. Denson MA, Wszolek ZK, Pfeiffer RF, Wszolek EK, Paschall TM, McComb RD (1997) Familial parkinsonism, dementia, and Lewy body disease: study of family G. Ann Neurol 42:638–643

    Article  PubMed  CAS  Google Scholar 

  5. Di Fonzo A, Wu-Chou YH, Lu CS, van Doeselaar M, Simons EJ, Rohe CF, Chang HC, Chen RS, Weng YH, Vanacore N, Breedveld GJ, Oostra BA, Bonifati V (2006) A common missense variant in the LRRK2 gene, Gly2385Arg, associated with Parkinson’s disease risk in Taiwan. Neurogenetics 7:133–138

    Article  PubMed  CAS  Google Scholar 

  6. Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7:306–318

    Article  PubMed  CAS  Google Scholar 

  7. Galvin JE, Lee VM, Trojanowski JQ (2001) Synucleinopathies: clinical and pathological implications. Arch Neurol 58:186–190

    Article  PubMed  CAS  Google Scholar 

  8. Giasson BI, Duda JE, Forman MS, Lee VM, Trojanowski JQ (2001) Prominent perikaryal expression of alpha- and beta-synuclein in neurons of dorsal root ganglion and in medullary neurons. Exp Neurol 172:354–362

    Article  PubMed  CAS  Google Scholar 

  9. Khan NL, Jain S, Lynch JM, Pavese N, Abou-Sleiman P, Holton JL, Healy DG, Gilks WP, Sweeney MG, Ganguly M, Gibbons V, Gandhi S, Vaughan J, Eunson LH, Katzenschlager R, Gayton J, Lennox G, Revesz T, Nicholl D, Bhatia KP, Quinn N, Brooks D, Lees AJ, Davis MB, Piccini P, Singleton AB, Wood NW (2005) Mutations in the gene LRRK2 encoding dardarin (PARK8) cause familial Parkinson’s disease: clinical, pathological, olfactory and functional imaging and genetic data. Brain 128:2786–2796

    Article  PubMed  Google Scholar 

  10. Korr D, Toschi L, Donner P, Pohlenz HD, Kreft B, Weiss B (2006) LRRK1 protein kinase activity is stimulated upon binding of GTP to its Roc domain. Cell Signal 18:910–920

    Article  PubMed  CAS  Google Scholar 

  11. Lavedan C (1998) The synuclein family. Genome Res 8:871–880

    PubMed  CAS  Google Scholar 

  12. Leverenz JB, Fishel MA, Peskind ER, Montine TJ, Nochlin D, Steinbart E, Raskind MA, Schellenberg GD, Bird TD, Tsuang D (2006) Lewy body pathology in familial Alzheimer disease: evidence for disease- and mutation-specific pathologic phenotype. Arch Neurol 63:370–376

    Article  PubMed  Google Scholar 

  13. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K et al (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269:973–977

    Article  PubMed  CAS  Google Scholar 

  14. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  PubMed  CAS  Google Scholar 

  15. Marin I (2006) The Parkinson Disease gene LRRK2: evolutionary and Structural Insights. Mol Biol Evol 23:2423–2433

    Article  PubMed  CAS  Google Scholar 

  16. Mata IF, Kachergus JM, Taylor JP, Lincoln S, Aasly J, Lynch T, Hulihan MM, Cobb SA, Wu RM, Lu CS, Lahoz C, Wszolek ZK, Farrer MJ (2005) Lrrk2 pathogenic substitutions in Parkinson’s disease. Neurogenetics 6:171–177

    Article  PubMed  CAS  Google Scholar 

  17. Mata IF, Wedemeyer WJ, Farrer MJ, Taylor JP, Gallo KA (2006) LRRK2 in Parkinson’s disease: protein domains and functional insights. Trends Neurosci 29:286–293

    Article  PubMed  CAS  Google Scholar 

  18. Meylan E, Tschopp J (2005) The RIP kinases: crucial integrators of cellular stress. Trends Biochem Sci 30:151–159

    Article  PubMed  CAS  Google Scholar 

  19. Nolen B, Taylor S, Ghosh G (2004) Regulation of protein kinases; controlling activity through activation segment conformation. Mol Cell 15:661–675

    Article  PubMed  CAS  Google Scholar 

  20. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  PubMed  CAS  Google Scholar 

  21. Schlitter AM, Woitalla D, Mueller T, Epplen JT, Dekomien G (2006) The LRRK2 gene in Parkinson’s disease: mutation screening in patients from Germany. J Neurol Neurosurg Psychiatry 77:891–892

    Article  PubMed  CAS  Google Scholar 

  22. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K et al (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760

    Article  PubMed  CAS  Google Scholar 

  23. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302:841

    Article  PubMed  CAS  Google Scholar 

  24. Tanzi RE, Bertram L (2001) New frontiers in Alzheimer’s disease genetics. Neuron 32:181–184

    Article  PubMed  CAS  Google Scholar 

  25. Tomiyama H, Li Y, Funayama M, Hasegawa K, Yoshino H, Kubo S, Sato K, Hattori T, Lu CS, Inzelberg R, Djaldetti R, Melamed E, Amouri R, Gouider-Khouja N, Hentati F, Hatano Y, Wang M, Imamichi Y, Mizoguchi K, Miyajima H, Obata F, Toda T, Farrer MJ, Mizuno Y, Hattori N (2006) Clinicogenetic study of mutations in LRRK2 exon 41 in Parkinson’s disease patients from 18 countries. Mov Disord 21:1102–1108

    Article  PubMed  Google Scholar 

  26. Yu L, Gaitatzes C, Neer E, Smith TF (2000) Thirty-plus functional families from a single motif. Protein Sci 9:2470–2476

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank all clinicians and their patients for their participation in this study, without whom this work could not have been completed. In addition, we thank all collaborating investigators and physicians of the Udall Center, Mayo Clinic (Jacksonville, FL) for their continued effort. Minnie Schreiber is thanked for laboratory support. NINDS P50 NS40256 funded the Udall Clinical and Genetic Cores and R01 NS36960 (HP). This work was supported by a Robert H. and Clarice Smith Fellowship (OAR) and the National Parkinson’s Foundation (JPT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Farrer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, J.P., Hulihan, M.M., Kachergus, J.M. et al. Leucine-rich repeat kinase 1: a paralog of LRRK2 and a candidate gene for Parkinson’s disease. Neurogenetics 8, 95–102 (2007). https://doi.org/10.1007/s10048-006-0075-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-006-0075-8

Keywords

Navigation