Skip to main content
Log in

Production of erythrocyte microparticles in a sub-hemolytic environment

  • Original Article
  • Artificial Heart (Basic)
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Microparticles are produced by various cells due to a number of different stimuli in the circulatory system. Shear stress has been shown to injure red blood cells resulting in hemolysis or non-reversible sub-hemolytic damage. We hypothesized that, in the sub-hemolytic shear range, there exist sufficient mechanical stimuli for red blood cells to respond with production of microparticles. Red blood cells isolated from blood of healthy volunteers were exposed to high shear stress in a microfluidic channel to mimic mechanical trauma similar to that occurring in ventricular assist devices. Utilizing flow cytometry techniques, both an increase of shear rate and exposure time showed higher concentrations of red blood cell microparticles. Controlled shear rate exposure shows that red blood cell microparticle concentration may be indicative of sub-hemolytic damage to red blood cells. In addition, properties of these red blood cell microparticles produced by shear suggest that mechanical trauma may underlie some complications for cardiovascular patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mecozzi G, et al. Intravascular hemolysis in patients with new-generation prosthetic heart valves: a prospective study. J Thorac Cardiovasc Surg. 2002;123:550–6.

    Article  CAS  PubMed  Google Scholar 

  2. Mitlyng BL, et al. Use of breath carbon monoxide to measure the influence of prosthetic heart valves on erythrocyte survival. Am J Cardiol. 2006;97:1374–6.

    Article  PubMed  Google Scholar 

  3. Taimeh Z, et al. Erythrocyte aging as a mechanism of anemia and a biomarker of device thrombosis in continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2017;36:625–32.

    Article  PubMed  Google Scholar 

  4. Olia SE, et al. Mechanical blood trauma in assisted circulation: sublethal RBC damage preceding hemolysis. Int J Artif Organs. 2016;39:150–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barcellini W, Fattizzo B. Clinical applications of hemolytic markers in the differential diagnosis and management of hemolytic anemia. Dis Markers. 2015;2015:635670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dao KM, et al. Sensitivity of the erythrocyte membrane bilayer to subhemolytic mechanical trauma as detected by fluorescence anisotropy. Biorheology. 1994;31:69–76.

    Article  CAS  PubMed  Google Scholar 

  7. Kameneva MV, et al. Mechanisms of red blood cell trauma in assisted circulation. Rheologic similarities of red blood cell transformations due to natural aging and mechanical stress. Blood Trauma Assist Circ. 1995;41:457–60.

    Google Scholar 

  8. Kameneva MV, et al. Decrease in red blood cell deformability caused by hypothermia, hemodilution, and mechanical stress: factors related to cardiopulmonary bypass. ASAIO J. 1999;45:307–10.

    Article  CAS  PubMed  Google Scholar 

  9. Simmonds MJ, et al. Erythrocyte deformability responses to intermittent and continuous subhemolytic shear stress. Biorheology. 2014;51:171–85.

    Article  PubMed  Google Scholar 

  10. O’Rear EA, et al. Reduced erythrocyte deformability associated with calcium accumulation. Biochimica et Biophysica Acta. 1982;691:274–80.

    Article  PubMed  Google Scholar 

  11. Sutera SP. Flow-induced trauma to blood cells. Circul Res. 1977;41:2–8.

    Article  CAS  Google Scholar 

  12. Shiga T, et al. Cell age-dependent changes in deformability and calcium accumulation of human erythrocytes. Biochimica et Biophysica Acta. 1985;814:289–99.

    Article  CAS  PubMed  Google Scholar 

  13. Sutera SP, et al. Age-related changes in deformability of human erythrocytes. Blood. 1985;65:275–82.

    Article  CAS  PubMed  Google Scholar 

  14. Buerck JP, et al. A flow induced autoimmune response and accelerated senescence of red blood cells in cardiovascular devices. Sci Rep. 2019;9:19443.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sandza JG, et al. Subhemolytic trauma of erythrocytes: recognition and sequestration by the spleen as a function of shear. Trans Am Soc Artif Intern Organs. 1974;B20:457–62.

    Google Scholar 

  16. Alaarg A, et al. Red blood cell vesiculation in hereditary hemolytic anemia. Front Physiol. 2013;4:365.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Willekens FL, et al. Erythrocyte vesiculation: a self-protective mechanism? Br J Haematol. 2008;141:549–56.

    Article  CAS  PubMed  Google Scholar 

  18. Nascimbene A, et al. Association between cell-derived microparticles and adverse events in patients with nonpulsatile left ventricular assist devices. J Heart Lung Transplant. 2014;33:470–7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kay MMB, et al. Senescent cell antigen is immunologically related to band 3. Cell Biol. 1983;80:1631–5.

    CAS  Google Scholar 

  20. Low PS, et al. Contribution of the band 3-ankyrin interaction to erythrocyte membrane mechanical stability. Blood. 1991;77:1581–6.

    Article  CAS  PubMed  Google Scholar 

  21. Rubin O, et al. Red blood cell microparticles: clinical relevance. Transfus Med Hemother. 2012;39:342–7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Burger P, et al. Potassium leakage primes stored erythrocytes for phosphatidylserine exposure and shedding of pro-coagulant vesicles. Br J Haematol. 2013;160:377–86.

    Article  CAS  PubMed  Google Scholar 

  23. Bevers EM, Comfurius P, Dekkers DW, Zwaal RF. Lipid translocation across the plasma membrane of mammalian cells. Biochimica et Biophysica Acta. 1999;1439:317–30.

    Article  CAS  PubMed  Google Scholar 

  24. Koshiar RL, et al. Erythrocyte-derived microparticles supporting activated protein C-mediated regulation of blood coagulation. PLoS ONE. 2014;9:e104200.

    Article  PubMed  Google Scholar 

  25. Greenwalt TJ, Byran DJ, Dumaswala UJ. Erythrocyte membrane vesiculation and changes in membrane composition during storage in citrate-phosphate-dextrose-adenine-1. Vox Sang. 1984;47:261–70.

    Article  CAS  PubMed  Google Scholar 

  26. Dumaswala UJ, T.J.G. Human erythrocytes shed exocytic vesicles in vivo. Transfusion. 1984;24:490–2.

    Article  CAS  PubMed  Google Scholar 

  27. Lutz HU, Liu S-C, Palek J. Release of spectrin-free vesicles from human erythrocytes during ATP depletion. J Cell Biol. 1977;73:548–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Badimon L, et al. Diet, microparticles and atherothrombosis. Front Biosci. 2018;23:432–57.

    Article  CAS  Google Scholar 

  29. Suades R, et al. Growing thrombi release increased levels of CD235a(+) microparticles and decreased levels of activated platelet-derived microparticles. Validation in ST-elevation myocardial infarction patients. J Thromb Haemost. 2015;13:1776–86.

    Article  CAS  PubMed  Google Scholar 

  30. Chiva-Blanch G, et al. Microparticle shedding by erythrocytes, monocytes and vascular smooth muscular cells is reduced by aspirin in diabetic patients. Rev Esp Cardiol (Engl Ed). 2016;69:672–80.

    Article  Google Scholar 

  31. Badimon L, et al. Microvesicles in atherosclerosis and angiogenesis: from bench to bedside and reverse. Front Cardiovasc Med. 2017;4:77.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hugel BND, et al. Elevated levels of circulating procoagulant microparticles in patients with paroxysmal nocturnal hemoglobinuria and aplastic anemia. Hemostasis Thromb Vasc Biol. 1999;93:3451–6.

    CAS  Google Scholar 

  33. van Beers EJ, et al. Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease. Haematologica. 2009;94:1513–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jeske WP, et al. Blood cell microparticles as biomarkers of hemostatic abnormalities in patients with implanted cardiac assist devices. Biomarkers Med. 2016;10:1095–104.

    Article  CAS  Google Scholar 

  35. Burnier L, et al. Cell-derived microparticles in haemostasis and vascular medicine. Thromb Haemost. 2009;101:439–51.

    Article  CAS  PubMed  Google Scholar 

  36. Vion AC, et al. Shear stress regulates endothelial microparticle release. Circ Res. 2013;112:1323–33.

    Article  CAS  PubMed  Google Scholar 

  37. Westerman M, Porter JB. Red blood cell-derived Microparticles: an overview. Blood Cells Mol Dis. 2016;59:134–9.

    Article  CAS  PubMed  Google Scholar 

  38. O’Rear EA, et al. Increased intracellular calcium and decreased deformability of erythrocytes from prosthetic heart valve patients. Clin Hemorheol. 1984;4:461–71.

    Google Scholar 

  39. Alsmadi NZ, et al. Constricted microfluidic devices to study the effects of transient high shear exposure on platelets. Biomicrofluidics. 2017;11(6):064105.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Son Y. Determination of shear viscosity and shear rate from pressure drop and flow rate relationship in a rectangular channel. Polymer. 2007;48:632–7.

    Article  CAS  Google Scholar 

  41. Lewis CS, et al. Effects of transient exposure to high shear on neutrophil rolling behavior. Cell Mol Bioeng. 2018;11:279–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang T, et al. Study of flow-induced hemolysis using novel Couette-type blood-shearing devices. Artif Organs. 2011;35:1180–6.

    Article  PubMed  Google Scholar 

  43. Toninato R, Fadda G, Susin FM. A red blood cell model to estimate the hemolysis fingerprint of cardiovascular devices. Artif Organs. 2018;42:58–67.

    Article  CAS  PubMed  Google Scholar 

  44. Hochmuth RM, Evans EA, Colvard DF. Viscosity of human red cell membrane in plastic flow. Microvasc Res. 1976;11:155–9.

    Article  CAS  PubMed  Google Scholar 

  45. Distler JHW, et al. The release of microparticles by apoptotic cells and their effects on macrophages. Apoptosis. 2005;10:731–41.

    Article  CAS  PubMed  Google Scholar 

  46. Burger D, et al. Microparticles: biomarkers and beyond. Clin Sci (Lond). 2013;124:423–41.

    Article  CAS  Google Scholar 

  47. Terrisse AD, et al. Internalization of microparticles by endothelial cells promotes platelet/endothelial cell interaction under flow. J Thromb Haemost. 2010;8:2810–9.

    Article  CAS  PubMed  Google Scholar 

  48. Willekens FL, et al. Liver Kupffer cells rapidly remove red blood cell-derived vesicles from the circulation by scavenger receptors. Blood. 2005;105:2141–5.

    Article  CAS  PubMed  Google Scholar 

  49. Litvack ML, Post M, Palaniyar N. IgM promotes the clearance of small particles and apoptotic microparticles by macrophages. PLoS ONE. 2011;6:e17223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shah P, et al. Lactate dehydrogenase is superior to serum free hemoglobin as a marker of pump thrombosis in left ventricular assist devices. J Heart Lung Transplant. 2013;32:S37.

    Article  Google Scholar 

  51. Bartoli CR, et al. Clinical and in vitro evidence that subclinical hemolysis contributes to LVAD thrombosis. Ann Thorac Surg. 2018;105:807–14.

    Article  PubMed  Google Scholar 

  52. O’Rear EA, et al. Use of a rheological technique to evaluate erythrocyte membrane alterations. J Rheol. 1979;23:721–33.

    Article  CAS  Google Scholar 

  53. Guo Q, et al. Microfluidic analysis of red blood cell deformability. J Biomech. 2014;47:1767–76.

    Article  PubMed  Google Scholar 

  54. Shiga T, Maeda N, Kon K. Erythrocyte Rheology. Crit Rev Oncol/Hematol. 1990;10:9–48.

    Article  CAS  Google Scholar 

  55. Zubairova LD, et al. Circulating microparticles alter formation, structure, and properties of fibrin clots. Sci Rep. 2015;5:17611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Waugh RE, et al. Rheologic properties of senescent erythrocytes: loss of surface area and volume with red blood cell age. Blood. 1992;79:1351–8.

    Article  CAS  PubMed  Google Scholar 

  57. Nomura S, Shimizu M. Clinical significance of procoagulant microparticles. J Intensive Care. 2015;3:2.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Berckmans R, Nieuwland R, Boing AN, Romijn FPHTM, Hack CE, Sturk A. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost. 2001;85:639–46.

    Article  CAS  PubMed  Google Scholar 

  59. Ziad Mallat M et al (1999) Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity. Circulation. 99:348–53.

    Article  Google Scholar 

  60. Biró E, et al. Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner. J Thromb Haemost. 2003;12:2561–8.

    Article  Google Scholar 

  61. Sinauridze EI, et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost. 2007;97:425–34.

    Article  CAS  PubMed  Google Scholar 

  62. Lipets E, et al. Circulating contact-pathway-activating microparticles together with factors IXa and XIa induce spontaneous clotting in plasma of hematology and cardiologic patients. PLoS ONE. 2014;9:e87692.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Van Der Meijden PE, et al. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J Thromb Haemost. 2012;10:1355–62.

    Article  Google Scholar 

  64. Jy W, et al. Red cell-derived microparticles (RMP) as haemostatic agent. Thromb Haemost. 2013;110:751–60.

    Article  CAS  PubMed  Google Scholar 

  65. Nauta AJ, et al. Direct binding of C1q to apoptotic cells and cells blebs induces complement activation. Eur J Immunol. 2002;32:1726–36.

    Article  CAS  PubMed  Google Scholar 

  66. Kay MMB. Mechanism of removal of-senescent cells by human macrophages in situ. Proc Nat Acad Sci. 1975;72:3521–5.

    Article  CAS  PubMed  Google Scholar 

  67. Kay M. Immunoregulation of cellular life span. Ann NY Acad Sci. 2005;1057:85–111.

    Article  CAS  PubMed  Google Scholar 

  68. Turrini F, et al. Clustering of integral membrane proteins of the human erythrocyte membrane stimulates autologous IgG binding, complement deposition, and phogocytosis. J Biol Chem. 1991;266:23611–7.

    Article  CAS  PubMed  Google Scholar 

  69. Lutz HU, Bogdanova A. Mechanisms tagging senescent red blood cells for clearance in healthy humans. Front Physiol. 2013;4:387.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Czerwinski M, et al. Degradation of the human erythrocyte membrane band 3 studied with the monoclonal antibody directed against an epitope on the cytoplasmic fragment of band 3. Eur J Biochem. 1988;174:647–54.

    Article  CAS  PubMed  Google Scholar 

  71. Grisendi G, et al. Detection of microparticles from human red blood cells by multiparametric flow cytometry. Blood Transfus. 2015;13:274–80.

    PubMed  PubMed Central  Google Scholar 

  72. Chandler WL. Measurement of microvesicle levels in human blood using flow cytometry. Cytometry B Clin Cytom. 2016;90:326–36.

    Article  CAS  PubMed  Google Scholar 

  73. Orozco AF, Lewis DE. Flow cytometric analysis of circulating microparticles in plasma. Cytometry A. 2010;77:502–14.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in this publication was supported by the National Institutes of Health Small Business Innovation Research program under Award Number R44HL114246 as a subcontract to the University of Oklahoma from VADovations and NIH Grant R21HL132286 to DWS and TAS. The content of the paper is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

JPB conducted experiments, analyzed data and wrote the paper; DKB ran experiments and analyzed data; EAO conceived of the project, contributed to analysis of results and writing to the paper; DWS aided in design and implementation of experiments and editing of the manuscript; TAS contributed to data analysis and review of the manuscript; DVP contributed to experimental analysis and manuscript revision.

Corresponding author

Correspondence to Edgar A. O’Rear.

Ethics declarations

Conflict of interest

T.A.S. is currently employed with a company developing ventricular assist devices. All other authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buerck, J.P., Burke, D.K., Schmidtke, D.W. et al. Production of erythrocyte microparticles in a sub-hemolytic environment. J Artif Organs 24, 135–145 (2021). https://doi.org/10.1007/s10047-020-01231-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-020-01231-7

Keywords

Navigation