Triboelectric charging of polytetrafluoroethylene antithrombotic catheters

Abstract

This study proposes that a polytetrafluoroethylene (PTFE) electret tube charged by frictional electricity can prevent the solidification of the indwelling catheter in blood vessels. Coagulation in intravascular indwelling catheters may discontinue the treatment because of thrombus-derived bacteria–adhesion infections or poor blood removal. Current commercially available intravascular catheters lack complete antithrombotic measures, even with heparin or urokinase antithrombotic coatings. Herein, we tested the effectiveness of an antithrombotic treatment that prevents coagulation using a static electric charge on the interior of the PTFE tube via the triboelectric effect by rubbing the tube’s inner wall with a round glass rod. The anticoagulation properties were evaluated by enclosing a sample of blood in an electret tube and observing the coagulase adhering to the inner wall using a microscope. To confirm the effectiveness of this treatment, the charge–distribution on the inner surface of the electret tube was measured, surface irregularities were observed, and the elements on the surface were analyzed. The surface potential inside the electret tube was − 366.4 V, which proved effective for an antithrombotic treatment, as it discouraged coagulation, and the triboelectric charging process caused neither surface element denaturation nor significant surface irregularities. The nearly uniform negative surface charge on the inside of the tube was responsible for the antithrombotic effect because no surface irregularities or change in the surface element denaturation was observed. Triboelectrically charged PTFE electret tubes are highly useful for intravascular indwelling catheters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    The japanese society of dialysis medicine current status of chronic dialysis therapy in Japan (as of December 31, 2016). J Jpn Soc Dial Med. 2018;51:1–51. https://doi.org/10.4009/jsdt.51.1.

    Article  Google Scholar 

  2. 2.

    Vandecasteele SJ, Boelaert JR, De Vriese AS. Staphylococcus aureus infections in hemodialysis: what a nephrologist should know. Clin J Am Soc Nephrol. 2009;4:1388–400. https://doi.org/10.2215/CJN.01590309.

    Article  PubMed  Google Scholar 

  3. 3.

    Dalgaard LS, Nørgaard M, Jespersen B, Jensen-Fangel S, Østergaard LJ, Schønheyder HC, Søgaard OS. Risk and prognosis of bloodsstream infection among patients on chronic hemodialysis: a population-based cohort study. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0124547.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Fujimoto S. To acquire pathogen, infection, immunity. Manzando. 2010;174–6. ISBN: 978-4-525-16232-0.

  5. 5.

    Shanks RM, Sargent JL, Martinez RM, Graber ML, O'Toole GA. Catheter lock solutions influence staphylococcal biofilm formation on abiotic surfaces. Nephrol Dial Transpl. 2006;21:2247–55. https://doi.org/10.1093/ndt/gfl170.

    CAS  Article  Google Scholar 

  6. 6.

    Schubert C, Moosa MR. Infective endocarditis in a hemodialysis patient: a dreaded complication. Hemodial Int. 2007;11:379–84. https://doi.org/10.1111/j.1542-4758.2007.00204.x.

    Article  PubMed  Google Scholar 

  7. 7.

    Ohmori H, Asahi H, Enno T, Inoue Y, Yoneyama Y, Irino T, Nakajima J, Inaba T, Saito K. Central venous catheter infection in surgical emergency area—in particular urokinase-immobilized catheter—on the antithrombotic and infectiousness of infection. Japan Surg Infect Dis Res. 1999;11:106–10.

    Google Scholar 

  8. 8.

    Uchida T, Ando K, Kofuji M, Hayasaka H, Nakajima I, Komada T, Hirai K, Mori H, Yoshida I, Tabei K. Evaluation of complications in short term vascular access. Japan Dial Med Soc J. 2011;44:229–35. https://doi.org/10.4009/jsdt.44.229.

    Article  Google Scholar 

  9. 9.

    Goto Y, Takamine Y, Okabe H, Kukita W, Yonekawa M, Kaeamura A. Experience of using a peripheral perforated double lumen catheter in hemodialysis pharmacology and clinical. Clin React Drugs. 1995;7:77–8.

    Google Scholar 

  10. 10.

    Sugitachi A, Kawahara T, Kodama J, Kikkawa Y, Takagi K. Antithrombogenicity of immobilized urokinase and its clinical significance. Blut. 1978;37:31–6. https://doi.org/10.1007/BF01006551.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Ogino M, Naemura K, Yokoyama K. Basic research toward development of double lumen catheter using electret. Med Eng Treat. 2017;29:14–8.

    Google Scholar 

  12. 12.

    Mokudai Z. Charging by friction of polymeric substance: Kochi University Academic Research Report. Kochi Univ Acad Res Rep Nat Sci 1979;27:43–56. https://kochi.repo.nii.ac.jp/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=3908&item_no=1&page_id=13&block_id=21.

  13. 13.

    Baba T. Current status of artificial blood vessels and recent progress. Artif Organs. 2015. https://doi.org/10.11392/jsao.44.146.

    Article  Google Scholar 

  14. 14.

    Fukada E. Frictional electrification of polymer. J Electrophotogr Soc. 1959. https://doi.org/10.11370/isjep.1.2_3.

    Article  Google Scholar 

  15. 15.

    Onomae H. Development of visible making electrostatics distribution system. Kagoshima Prefect Ind Technol Center No. 20. 2006;57–63. https://www.kagoshima-it.go.jp/pdf/kenkyu_report/k_report_2006_11.

  16. 16.

    Honda T, Izawa Y, Nishijima K. Effects of humidity on charge decay of surface-charged dielectrics. Natl Inst Electr Eng Jpn. 2004;124. https://ieej.ixsq.nii.ac.jp/ej/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=20402&item_no=1&page_id=13&block_id=18.

  17. 17.

    Fujii M, Kamibayashi H, Shinohara H, Miyashita Y. Development of adhesion technology between PTFE and metal—PTFE surface modification using plasma irradiation. Mitsubishi Cable Ind Timetable. 2002;99:78–84.

    Google Scholar 

  18. 18.

    Tatsumi N, Kubota K, Honma M, Higashi K, Kondo H, Anami K. Blood Cell Note. Bun Kodo. 2013;7:119–22.

    Google Scholar 

  19. 19.

    Kagi N, Yanagi U, Ikeda K, Nishimura N, Yoshino H, Saito H, Saito K, Kamakura R. A study on hygiene control of indoor environment at hospital facilities. Proc Air Cond Sanit Eng Soc. 2008;137:39–46. https://doi.org/10.18948/shase.33.137_39.

    Article  Google Scholar 

  20. 20.

    Miura T, Okuno R. Details of evapotranspiration calculation by Penman formula. Proc Soc Agric Civ Eng. 1993;164:157–63. https://doi.org/10.11408/jsidre1965.1993.164_157.

    Article  Google Scholar 

  21. 21.

    Xu HY, Fu X, Lee LK, Ma S, Goh KT, Wong J, Habibullah MS, Lee GK, Lim TK, Tambyah PA, Lim CL. Statistical modeling reveals the effect of absolute humidity on dengue in Singapore. PLoS Negl Trop Dis. 2014;8:e2805. https://doi.org/10.1371/journal.pntd.0002805.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Omoto Y, Hamotani K, Um HH. Recent changes in trends of humidity of Japanese cities. J Japan Soc Hydrol Water Resour. 1994;7:106–13. https://doi.org/10.3178/jjshwr.7.2_106.

    Article  Google Scholar 

  23. 23.

    Hiratsuka K, Hosotani K. Effects of friction type and humidity on triboelectrification and triboluminescence among eight kinds of polymers. Tribol Int. 2012;55:87–99. https://doi.org/10.1016/j.triboint.2012.05.017.

    CAS  Article  Google Scholar 

  24. 24.

    Gibson N, Lloyd FC. Incendivity of discharges from electrostatically charge plastics. Br J Appl Phys. 1965;16:1619. https://doi.org/10.1088/0508-3443/16/11/302.

    CAS  Article  Google Scholar 

  25. 25.

    Li J, Wu G, Xu Z. Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation. Waste Manag. 2015;35:36–41. https://doi.org/10.1016/j.wasman.2014.10.001.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Terauchi Y, Hamamoto T. Temperature rise due to frictional heat lubrication. Lubrication. 1970;15:133–8.

    Google Scholar 

  27. 27.

    Akaike T. Biofunctional materials science. Tokyo: Corona Company; 2005. p. 42–45.

    Google Scholar 

  28. 28.

    Lowkis B, Szymonowicz M. Effect of the electret-blood contact time on the adhesion of human blood platelets. Polim Med. 1993;23:21–30.

    CAS  PubMed  Google Scholar 

  29. 29.

    Yoshihiko N. Experimental studies on polyurethane vascular grafts for homodialysis Part 2. Patency, complications, and histological studies after long-term implantation. Tokyo Women's Med Coll Pap. 1993;63:658–70.

    Google Scholar 

  30. 30.

    Yoshito I. Interfacial problems of biomaterials. Surf Sci. 1999;20:584–91.

    Google Scholar 

  31. 31.

    Chandler AB. In vitro thrombotic coagulation of the blood: a method for producing a thrombus. Lab Invest. 1958;7:110–4. https://doi.org/10.3109/00365516709076933.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to take this opportunity to thank Kotono Ohki, Natsuki Hada, Hayato Mitani, Takanori Tanabe, Shinya Sudo, and Nozomu Souma from Tokyo University of Technology, Department of Clinical Engineering for providing their much appreciated support in conducting this research.

Funding

There are no financial relations with the organization that supported the study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Minoru Ogino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ogino, M., Naemura, K., Sasaki, S. et al. Triboelectric charging of polytetrafluoroethylene antithrombotic catheters. J Artif Organs 22, 300–306 (2019). https://doi.org/10.1007/s10047-019-01122-6

Download citation

Keywords

  • Electret
  • Intravascular indwelling catheter
  • Triboelectric charging
  • Anticoagulant