Skip to main content

Advertisement

Log in

In-vitro evaluation of limitations and possibilities for the future use of intracorporeal gas exchangers placed in the upper lobe position

  • Original Article
  • Artificial Lung / ECMO
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

The lack of donor organs has led to the development of alternative “destination therapies”, such as a bio-artificial lung (BA) for end-stage lung disease. Ultimately aiming at a fully implantable BA, general capabilities and limitations of different oxygenators were tested based on the model of BA positioning at the right upper lobe. Three different-sized oxygenators (neonatal, paediatric, and adult) were tested in a mock circulation loop regarding oxygenation and decarboxylation capacities for three respiratory pathologies. Blood flows were imitated by a roller pump, and respiration was imitated by a mechanical ventilator with different FiO2 applications. Pressure drops across the oxygenators and the integrity of the gas-exchange hollow fibers were analyzed. The neonatal oxygenator proved to be insufficient regarding oxygenation and decarboxylation. Despite elevated pCO2 levels, the paediatric and adult oxygenators delivered comparable sufficient oxygen levels, but sufficient decarboxylation across the oxygenators was ensured only at flow rates of 0.5 L min. Only the adult oxygenator indicated no significant pressure drops. For all tested conditions, gas-exchange hollow fibers remained intact. This is the first study showing the general feasibility of delivering sufficient levels of gas exchange to an intracorporeal BA via patient’s breathing, without damaging gas-exchange hollow fiber membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Organization WHO. Global surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach. Geneva: World Health Organization; 2013.

    Google Scholar 

  2. Koh Y. Update in acute respiratory distress syndrome. J Intensive Care. 2014;2:2.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Marasco SF, Lukas G, McDonald M, McMillan J, Ihle B. Review of ECMO (extra corporeal membrane oxygenation) support in critically ill adult patients. Heart Lung Circ. 2008;17:S41–47.

    Article  PubMed  Google Scholar 

  4. Yusen RD, Edwards LB, Kucheryavaya AY, et al. The registry of the International Society for Heart and Lung Transplantation: thirty-first adult lung and heart-lung transplant report—2014; focus theme: retransplantation. J Heart Lung Transplant. 2014;33:1009–24.

    Article  PubMed  Google Scholar 

  5. Kotloff RM, Thabut G. Lung transplantation. Am J Respir Crit Care Med. 2011;184:159–71.

    Article  PubMed  Google Scholar 

  6. Valapour M, Skeans MA, Heubner BM, et al. OPTN/SRTR 2012 annual data report: lung. Am J Transplant. 2014;14:139–65.

    Article  PubMed  Google Scholar 

  7. Warnecke G, Moradiellos J, Tudorache I, et al. Normothermic perfusion of donor lungs for preservation and assessment with the organ care system lung before bilateral transplantation: a pilot study of 12 patients. Lancet. 2012;380:1851–8.

    Article  PubMed  Google Scholar 

  8. Martin JT, Zwischenberger JB. Artificial lung and novel devices for respiratory support. Seminars in thoracic and cardiovascular surgery. Spring. 2013;25:70–5.

    Google Scholar 

  9. Ota K. Advances in artificial lungs. J Artif Organs. 2010;13:13–6.

    Article  PubMed  Google Scholar 

  10. Wiegmann B, Figueiredo C, Gras C, et al. Prevention of rejection of allogeneic endothelial cells in a biohybrid lung by silencing HLA-class I expression. Biomaterials. 2014;35:8123–33.

    Article  CAS  PubMed  Google Scholar 

  11. Hess C, Wiegmann B, Maurer AN, et al. Reduced thrombocyte adhesion to endothelialized poly 4-methyl-1-pentene gas exchange membranes-a first step toward bioartificial lung development. Tissue Eng Part A. 2010;16:3043–53.

    Article  CAS  PubMed  Google Scholar 

  12. Zwischenberger JB, Anderson CM, Cook KE, Lick SD, Mockros LF, Bartlett RH. Development of an implantable artificial lung: challenges and progress. ASAIO J. 2001;47:316 – 20.

    Article  CAS  PubMed  Google Scholar 

  13. Lick SD, Zwischenberger JB. Artificial lung: bench toward bedside. ASAIO J. 2004;50:2–5.

    Article  PubMed  Google Scholar 

  14. Nolan H, Wang D, Zwischenberger JB. Artificial lung basics: fundamental challenges, alternative designs and future innovations. Organogenesis. 2011;7:23–7. (Epub 2011 Jan 1).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Perlman CE, Mockros LF. Predicted oxygenation efficacy of a thoracic artificial lung. ASAIO J. 2012;58:247 – 54.

    Article  CAS  PubMed  Google Scholar 

  16. McGuigan AP, Sefton MV. The influence of biomaterials on endothelial cell thrombogenicity. Biomaterials. 2007;28:2547–71. (review).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Consigny PM. Endothelial cell seeding on prosthetic surfaces. J Long Term Eff Med Implants. 2000;10:79–95.

    Article  CAS  PubMed  Google Scholar 

  18. https://www.xenios-ag.com/medos-products/hilite-oxygenators/.

  19. Borchardt R, Schlanstein P, Mager I, Arens J, Schmitz-Rode T, Steinseifer U. In vitro performance testing of a pediatric oxygenator with an integrated pulsatile pump. ASAIO J. 2012;58:420–5. doi:10.1097/MAT.0b013e318251dc70.

    Article  CAS  PubMed  Google Scholar 

  20. Stocks J, Quanjer PH. Reference values for residual volume, functional residual capacity and total lung capacity. ATS Workshop on Lung Volume Measurements. Official Statement of The European Respiratory Society. Eur Respir J. 1995;8:492–506. (review).

    Article  CAS  PubMed  Google Scholar 

  21. Wettstein RB, Shelledy DC, Peters JI. Delivered oxygen concentrations using low-flow and high-flow nasal cannulas. Respir Care. 2005;50:604–9.

    PubMed  Google Scholar 

  22. Park M, Mendes PV, Hirota AS, Santos EV, Costa EL, Azevedo LC. Blood flow/pump rotation ratio as an artificial lung performance monitoring tool during extracorporeal respiratory support using centrifugal pumps. Rev Bras Ter Intensiva. 2015;27:178–84.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mahajan AK, Doeing DC, Hogarth DK. Isolation of persistent air leaks and placement of intrabronchial valves. J Thorac Cardiovasc Surg. 2013;145:626–30. doi:10.1016/j.jtcvs.2012.12.003. (Epub 2013 Jan 9. Review).

  24. Gogakos A, Barbetakis N, Lazaridis G, et al. Heimlich valve and pneumothorax. Ann Transl Med. 2015;3:54. doi:10.3978/j.issn.2305-5839.2015.03.25. (review).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Wiegmann.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Funding

This work was supported by a travelling award from the International Society of Heart and Lung Transplantation, by the Cluster of Excellence REBIRTH (Unit 4.1) and the German Center for Lung Research (DZL: 82DZL00201).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schumer, E., Höffler, K., Kuehn, C. et al. In-vitro evaluation of limitations and possibilities for the future use of intracorporeal gas exchangers placed in the upper lobe position. J Artif Organs 21, 68–75 (2018). https://doi.org/10.1007/s10047-017-0987-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-017-0987-0

Keywords

Navigation