Skip to main content
Log in

Generating pulsatility by pump speed modulation with continuous-flow total artificial heart in awake calves

  • Brief Communication
  • Artificial Heart (Basic)
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate the effects of sinusoidal pump speed modulation of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) on hemodynamics and pump flow in an awake chronic calf model. The sinusoidal pump speed modulations, performed on the day of elective sacrifice, were set at ±15 and ± 25% of mean pump speed at 80 bpm in four awake calves with a CFTAH. The systemic and pulmonary arterial pulse pressures increased to 12.0 and 12.3 mmHg (±15% modulation) and to 15.9 and 15.7 mmHg (±25% modulation), respectively. The pulsatility index and surplus hemodynamic energy significantly increased, respectively, to 1.05 and 1346 ergs/cm at ±15% speed modulation and to 1.51 and 3381 ergs/cm at ±25% speed modulation. This study showed that it is feasible to generate pressure pulsatility with pump speed modulation; the platform is suitable for evaluating the physiologic impact of pulsatility and allows determination of the best speed modulations in terms of magnitude, frequency, and profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Jabbar HR, Abbas A, Ahmed M, Klodell CT Jr, Chang M, Dai Y, Draganov PV. The incidence, predictors and outcomes of gastrointestinal bleeding in patients with left ventricular assist device (LVAD). Dig Dis Sci. 2015;60:3697–706. doi:10.1007/s10620-015-3743-4.

    Article  PubMed  Google Scholar 

  2. Wever-Pinzon O, Selzman CH, Drakos SG, Saidi A, Stoddard GJ, Gilbert EM, Labedi M, Reid BB, Davis ES, Kfoury AG, Li DY, Stehlik J, Bader F. Pulsatility and the risk of nonsurgical bleeding in patients supported with the continuous-flow left ventricular assist device HeartMate II. Circ Heart Fail. 2013;6:517–26. doi:10.1161/CIRCHEARTFAILURE.112.000206.

    Article  CAS  PubMed  Google Scholar 

  3. Corbett SC, Ajdari A, Coskun AU, Nayeb-Hashemi H. Effect of pulsatile blood flow on thrombosis potential with a step wall transition. ASAIO J. 2010;56:290–5. doi:10.1097/MAT.0b013e3181db2476.

    PubMed  Google Scholar 

  4. Loutzenhiser R, Griffin KA, Bidani AK. Systolic blood pressure as the trigger for the renal myogenic response: protective or autoregulatory? Curr Opin Nephrol Hypertens. 2006;5:41–9 (Review)

    Article  Google Scholar 

  5. Fukamachi K, Horvath DJ, Massiello AL, Fumoto H, Horai T, Rao S, Golding LA. An innovative, sensorless, pulsatile, continuous-flow total artificial heart: device design and initial in vitro study. J Heart Lung Transplant 2010;29:13–20. doi:10.1016/j.healun.2009.05.034.

    Article  PubMed  Google Scholar 

  6. Fumoto H, Horvath DJ, Rao S, Massiello AL, Horai T, Takaseya T, Arakawa Y, Mielke N, Chen JF, Dessoffy R, Fukamachi K, Golding LA. In vivo acute performance of the Cleveland Clinic self-regulating, continuous-flow total artificial heart. J Heart Lung Transplant 2010;29:21–6. doi:10.1016/j.healun.2009.05.035.

    Article  PubMed  Google Scholar 

  7. Karimov JH, Moazami N, Kobayashi M, Sale S, Such K, Byram N, Sunagawa G, Horvath D, Gao S, Kuban B, Golding LA, Fukamachi K. First report of 90-day support of 2 calves with a continuous-flow total artificial heart. J Thorac Cardiovasc Surg. 2015;150:687–93.e1. doi:10.1016/j.jtcvs.2015.06.023.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Undar A, Zapanta CM, Reibson JD, Souba M, Lukic B, Weiss WJ, Snyder AJ, Kunselman AR, Pierce WS, Rosenberg G, Myers JL. Precise quantification of pressure flow waveforms of a pulsatile ventricular assist device. ASAIO J. 2005;51:56–9.

    Article  PubMed  Google Scholar 

  9. Shiose A, Nowak K, Horvath DJ, Massiello AL, Golding LA, Fukamachi K. Speed modulation of the continuous-flow total artificial heart to simulate a physiologic arterial pressure waveform. ASAIO J 2010;56:403–9. doi:10.1097/MAT.0b013e3181e650f8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Golding LAR, Loop FD, Nosé Y. Clinical and experimental use of the centrifugal pump. In: Attar S, editors. New developments in cardiac assist devices. New York: Praeger Special Studies, WB Saunders; 1985. pp. 92–102.

    Google Scholar 

  11. Yada I, Golding LR, Harasaki H, Jacobs G, Koike S, Yozu R, Sato N, Fujimoto LK, Snow J, Olsen E, Murabayashi S, Venkatesen VS, Kiraly R, Nose Y. Physiopathological studies of nonpulsatile blood flow in chronic models. Trans Am Soc Artif Intern Organs. 1983;29:520–5.

    CAS  PubMed  Google Scholar 

  12. Garatti A, Bruschi G, Colombo T, Russo C, Lanfranconi M, Milazzo F, Frigerio M, Vitali E. Clinical outcome and bridge to transplant rate of left ventricular assist device recipient patients: comparison between continuous-flow and pulsatile-flow devices. Eur J Cardiothorac Surg 2008;34: 275–80. doi:10.1016/j.ejcts.2008.02.019 (discussion 280).

    Article  PubMed  Google Scholar 

  13. Hornick P, Taylor K. Pulsatile and nonpulsatile perfusion: the continuing controversy. J Cardiothorac Vasc Anesth. 1997;11:310–5.

    Article  CAS  PubMed  Google Scholar 

  14. Pruijsten RV, Lok SI, Kirkels HH, Klopping C, Lahpor JR, de Jonge N. Functional and haemodynamic recovery after implantation of continuous-flow left ventricular assist devices in comparison with pulsatile left ventricular assist devices in patients with end-stage heart failure. Eur J Heart Fail. 2012;14:319–25. doi:10.1093/eurjhf/hfr181.

    Article  PubMed  Google Scholar 

  15. Thalmann M, Schima H, Wieselthaler G, Wolner E. Physiology of continuous blood flow in recipients of rotary cardiac assist devices. J Heart Lung Transplant. 2005;24:237–45.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported with federal funding obtained from the National Heart, Lung and Blood Institute and the National Institutes of Health (Bethesda, Maryland, USA), under grant 5R01HL096619 (to LARG and KF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kiyotaka Fukamachi or Jamshid H. Karimov.

Ethics declarations

Conflict of interest

David Horvath, Barry Kuban, and Leonard A.R. Golding are inventors of the continuous-flow total artificial heart. The technology was licensed to Cleveland Heart, Inc., a Cleveland Clinic spin-off company. None of the other authors have a financial interest or other potential conflict of interest related to subject matter or materials mentioned in the manuscript.

Additional information

Coauthors LARG and DJH of the Department of Biomedical Engineering recently retired from the department.

Presented at the 36th Annual Meeting of International Society for Heart and Lung Transplantation, April 27–30, 2016, Washington, DC, USA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukamachi, K., Karimov, J.H., Sunagawa, G. et al. Generating pulsatility by pump speed modulation with continuous-flow total artificial heart in awake calves. J Artif Organs 20, 381–385 (2017). https://doi.org/10.1007/s10047-017-0958-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-017-0958-5

Keywords

Navigation