Skip to main content
Log in

High pulmonary vascular resistance in addition to low right ventricular stroke work index effectively predicts biventricular assist device requirement

  • Original Article
  • Artificial Heart (Clinical)
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Although the right ventricular stroke work index (RVSWI) is a good index for RV function, a low RVSWI is not necessarily an indicator for the need for a right ventricular assist device at the time of left VAD implantation. We here aimed to determine a more precise indicator for the need for a biventricular assist device (BiVAD). In total, 116 patients (mean age, 38 ± 14 years), who underwent hemodynamic assessments preoperatively including 12 BiVAD patients, and had been followed at our institute from 2003 to 2015, were included. Multivariate logistic regression analysis indicated that RVSWI and pulmonary vascular resistance (PVR) were independent predictors of BiVAD requirement (P < 0.05 for both). In addition, all patients were classified into 4 groups: (1) normal (RVSWI > 5 g/m, PVR < 3.7 WU), (2) pulmonary hypertension (RVSWI > 5, PVR > 3.7), (3) RV failure (RVSWI < 5, PVR < 3.7), and (4) both pulmonary hypertension and RV failure (RVSWI < 5, PVR > 3.7), and examined. Most of the patients in Group 4 (75 %), with acutely depressed hemodynamics and inflammatory responses in the myocardium, required BiVAD. Overall, patients with BiVAD had a worse survival rate as compared with those with LVAD alone. In conclusion, high PVR in addition to low RVSWI effectively predicts BiVAD requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361:2241–51.

    Article  CAS  PubMed  Google Scholar 

  2. Shiga T, Kinugawa K, Imamura T, Kato N, Endo M, Inaba T, et al. Combination evaluation of preoperative risk indices predicts requirement of biventricular assist device. Circ J. 2012;76:2785–91.

    Article  PubMed  Google Scholar 

  3. Cleveland JC Jr, Naftel DC, Reece TB, Murray M, Antaki J, Pagani FD, et al. Survival after biventricular assist device implantation: an analysis of the interagency registry for mechanically assisted circulatory support database. J Heart Lung Transplant. 2011;30:862–9.

    PubMed  Google Scholar 

  4. Fitzpatrick JR III, Frederick JR, Hsu VM, Kozin ED, O’Hara ML, Howell E, et al. Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant. 2008;27:1286–92.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fukamachi K, McCarthy PM, Smedira NG, Vargo RL, Starling RC, Young JB. Preoperative risk factors for right ventricular failure after implantable left ventricular assist device insertion. Ann Thorac Surg. 1999;68:2181–4.

    Article  CAS  PubMed  Google Scholar 

  6. Ochiai Y, McCarthy PM, Smedira NG, Banbury MK, Navia JL, Feng J, et al. Predictors of severe right ventricular failure after implantable left ventricular assist device insertion: analysis of 245 patients. Circulation. 2002;106:I198–202.

    Article  PubMed  Google Scholar 

  7. Fitzpatrick JR III, Frederick JR, Hiesinger W, Hsu VM, McCormick RC, Kozin ED, et al. Early planned institution of biventricular mechanical circulatory support results in improved outcomes compared with delayed conversion of a left ventricular assist device to a biventricular assist device. J Thorac Cardiovasc Surg. 2009;137:971–7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Imamura T, Kinugawa K, Nitta D, Hatano M, Kinoshita O, Nawata K, Ono M. Biventricular failure with low pulmonary vascular resistance was managed by left ventricular assist device without right-sided mechanical support. J Artf Orgns. 2015;18:272–5.

    Article  Google Scholar 

  9. Kussmaul WG, Noordergraaf A, Laskey WK. Right ventricular-pulmonary arterial interactions. Ann Biomed Eng. 1992;20:63–80.

    Article  CAS  PubMed  Google Scholar 

  10. Saito S, Sakaguchi T, Miyagawa S, Nishi H, Yoshikawa Y, Fukushima S, et al. Recovery of right heart function with temporary right ventricular assist using a centrifugal pump in patients with severe biventricular failure. J Heart Lung Transplant. 2012;31:858–64.

    Article  PubMed  Google Scholar 

  11. Kinugawa K. How to treat stage D heart failure?—When to implant left ventricular assist devices in the era of continuous flow pumps? Circ J. 2011;75:2038–45.

    Article  CAS  PubMed  Google Scholar 

  12. Imamura T, Kinugawa K, Shiga T, Endo M, Kato N, Inaba T, et al. Novel risk scoring system with preoperative objective parameters gives a good prediction of 1-year mortality in patients with a left ventricular assist device. Circ J. 2012;76:1895–903.

    Article  PubMed  Google Scholar 

  13. Saito S, Sakaguchi T, Miyagawa S, Yoshikawa Y, Yamauchi T, Ueno T, et al. Biventricular support using implantable continuous-flow ventricular assist devices. J Heart Lung Transplant. 2011;30:475–8.

    Article  PubMed  Google Scholar 

  14. Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2009;54:S43–54.

    Article  PubMed  Google Scholar 

  15. Zimpfer D, Zrunek P, Roethy W, Czerny M, Schima H, Huber L, et al. Left ventricular assist devices decrease fixed pulmonary hypertension in cardiac transplant candidates. J Thorac Cardiovasc Surg. 2007;133:689–95.

    Article  PubMed  Google Scholar 

  16. Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51:2163–72.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Imamura T, Kinugawa K, Kato N, Muraoka H, Fujino T, Inaba T, et al. Late-onset right ventricular failure in patients with preoperative small left ventricle after implantation of continuous flow left ventricular assist device. Circ J. 2014;78:625–33.

    Article  CAS  PubMed  Google Scholar 

  18. Pezzuto B, Badagliacca R, Poscia R, Ghio S, D’Alto M, Vitulo P, et al. Circulating biomarkers in pulmonary arterial hypertension: Update and future direction. J Heart Lung Transplant. 2015;34:282–305.

    Article  PubMed  Google Scholar 

  19. Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139:1316–24.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Teruhiko Imamura or Koichiro Kinugawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imamura, T., Kinugawa, K., Kinoshita, O. et al. High pulmonary vascular resistance in addition to low right ventricular stroke work index effectively predicts biventricular assist device requirement. J Artif Organs 19, 44–53 (2016). https://doi.org/10.1007/s10047-015-0867-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-015-0867-4

Keywords

Navigation