Skip to main content
Log in

Preoperative iodine-123 meta-iodobenzylguanidine imaging is a novel predictor of left ventricular reverse remodeling during treatment with a left ventricular assist device

  • Original Article
  • Artificial Heart (Clinical)
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Although left ventricular reverse remodeling (LVRR) is accompanied with an improved clinical course during LV assist device (LVAD) treatment, its preoperative prediction remains uncertain. Twenty-seven heart failure patients with dilated cardiomyopathy were enrolled in this study. Patients underwent 123I-meta-iodobenzylguanidine (MIBG) scintigraphy before LVAD implantation, and were monitored at our institute from 2010 to 2014. This study investigated the prognostic value of preoperative 123I-MIBG parameters for predicting postoperative LVRR. Of the preoperative variables studied, including 123I-MIBG data, washout rate (WR) ≤ 39 % was the only significant, independent predictor of LVRR (defined as LV ejection fraction ≥35 % at 6 months post-LVAD implant using univariate and multivariate logistic regression analyses) (p = 0.036, odds ratio [OR]:14.45). Improved exercise capacity and more frequent opening of the native aortic valve, as well as lower B-type natriuretic peptide plasma levels, were observed in LVRR patients (p < 0.05 for all), although β-blocker doses were comparable with those of non-LVRR patients throughout the 6-month LVAD support period. In conclusion, preoperative 123I-MIBG is a novel predictive tool of LVRR during LVAD support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kinugawa K. How to treat stage D heart failure? When to implant left ventricular assist devices in the era of continuous flow pumps? Circ J. 2011;75(9):2038–45.

    Article  CAS  PubMed  Google Scholar 

  2. Kirklin JK, Naftel DC, Pagani FD, et al. Sixth INTERMACS annual report: a 10,000-patient database. J Heart Lung Transpl. 2014;33(6):555–64.

    Article  Google Scholar 

  3. Imamura T, Kinugawa K, Fujino T, et al. Aortic insufficiency in patients with sustained left ventricular systolic dysfunction after axial flow assist device implantation. Circ J. 2015;79(1):104–11. doi:10.1253/circj.CJ-14-0944.

    Article  PubMed  Google Scholar 

  4. Drakos SG, Wever-Pinzon O, Selzman CH, et al. Magnitude and time course of changes induced by continuous-flow left ventricular assist device unloading in chronic heart failure: insights into cardiac recovery. J Am Coll Cardiol. 2013;61(19):1985–94.

    Article  PubMed  Google Scholar 

  5. Imamura T, Kinugawa K, Hatano M, et al. Preoperative beta-blocker treatment is a key for deciding left ventricular assist device implantation strategy as a bridge to recovery. J Artif Organs. 2014;17(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  6. Wieland DM, Rosenspire KC, Hutchins GD, et al. Neuronal mapping of the heart with 6-[18F]fluorometaraminol. J Med Chem. 1990;33(3):956–64.

    Article  CAS  PubMed  Google Scholar 

  7. Degrado TR, Zalutsky MR, Vaidyanathan G. Uptake mechanisms of meta-[123I]iodobenzylguanidine in isolated rat heart. Nucl Med Biol. 1995;22(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  8. Kuwabara Y, Tamaki N, Nakata T, Yamashina S, Yamazaki J. Determination of the survival rate in patients with congestive heart failure stratified by (1)(2)(3)I-MIBG imaging: a meta-analysis from the studies performed in Japan. Ann Nucl Med. 2011;25(2):101–7.

    Article  PubMed  Google Scholar 

  9. Currie GM, Iqbal B, Wheat JM, et al. Risk stratification in heart failure using (1)(2)(3)I-MIBG. J Nucl Med Technol. 2011;39(4):295–301.

    Article  PubMed  Google Scholar 

  10. Miranda SM, Moscavitch SD, Carestiato LR, et al. Cardiac I123-MIBG correlates better than ejection fraction with symptoms severity in systolic heart failure. Arq Bras Cardiol. 2013;101(1):4–8.

    PubMed  PubMed Central  Google Scholar 

  11. Jacobson AF, Senior R, Cerqueira MD, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55(20):2212–21.

    Article  PubMed  Google Scholar 

  12. Tamaki S, Yamada T, Okuyama Y, et al. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol. 2009;53(5):426–35.

    Article  CAS  PubMed  Google Scholar 

  13. Martins da Silva MI, Vidigal Ferreira MJ, Morao Moreira AP, Martins da Silva MI. Iodine-123-metaiodobenzylguanidine scintigraphy in risk stratification of sudden death in heart failure. Rev Port Cardiol. 2013;32(6):509–16.

    PubMed  Google Scholar 

  14. Nakata T, Nakajima K, Yamashina S, et al. A pooled analysis of multicenter cohort studies of (123)I-mIBG imaging of sympathetic innervation for assessment of long-term prognosis in heart failure. JACC Cardiovasc Imaging. 2013;6(7):772–84.

    Article  PubMed  Google Scholar 

  15. Shah AM, Bourgoun M, Narula J, Jacobson AF, Solomon SD. Influence of ejection fraction on the prognostic value of sympathetic innervation imaging with iodine-123 MIBG in heart failure. JACC Cardiovasc Imaging. 2012;5(11):1139–46.

    Article  PubMed  Google Scholar 

  16. Yamada T, Shimonagata T, Fukunami M, et al. Comparison of the prognostic value of cardiac iodine-123 metaiodobenzylguanidine imaging and heart rate variability in patients with chronic heart failure: a prospective study. J Am Coll Cardiol. 2003;41(2):231–8.

    Article  PubMed  Google Scholar 

  17. Momose M, Okayama D, Nagamatsu H, Kondo C, Hagiwara N, Sakai S. Long-term prognostic stratification by a combination of (123)I-metaiodobenzylguanidine scintigraphy and ejection fraction in dilated cardiomyopathy. Ann Nucl Med. 2011;25(6):419–24.

    Article  PubMed  Google Scholar 

  18. Cohen-Solal A, Esanu Y, Logeart D, et al. Cardiac metaiodobenzylguanidine uptake in patients with moderate chronic heart failure: relationship with peak oxygen uptake and prognosis. J Am Coll Cardiol. 1999;33(3):759–66.

    Article  CAS  PubMed  Google Scholar 

  19. Cha YM, Chareonthaitawee P, Dong YX, et al. Cardiac sympathetic reserve and response to cardiac resynchronization therapy. Circ Heart Fail. 2011;4(3):339–44.

    Article  PubMed  Google Scholar 

  20. Yamazaki J, Muto H, Kabano T, Yamashina S, Nanjo S, Inoue A. Evaluation of beta-blocker therapy in patients with dilated cardiomyopathy—clinical meaning of iodine 123-metaiodobenzylguanidine myocardial single-photon emission computed tomography. Am Heart J. 2001;141(4):645–52.

    Article  CAS  PubMed  Google Scholar 

  21. Drakos SG, Athanasoulis T, Malliaras KG, et al. Myocardial sympathetic innervation and long-term left ventricular mechanical unloading. JACC Cardiovasc Imaging. 2010;3(1):64–70.

    Article  PubMed  Google Scholar 

  22. George RS, Birks EJ, Cheetham A, et al. The effect of long-term left ventricular assist device support on myocardial sympathetic activity in patients with non-ischaemic dilated cardiomyopathy. Eur J Heart Fail. 2013;15(9):1035–43.

    Article  CAS  PubMed  Google Scholar 

  23. Imamura T, Kinugawa K, Nitta D, Hatano M, Ono M. Opening of aortic valve during exercise is key to preventing development of aortic insufficiency during ventricular assist device treatment. ASAIO J. 2015. doi:10.1097/MAT.0000000000000247.

    PubMed  Google Scholar 

  24. Kato TS, Chokshi A, Singh P, et al. Effects of continuous-flow versus pulsatile-flow left ventricular assist devices on myocardial unloading and remodeling. Circ Heart Fail. 2011;4(5):546–53.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Simon MA, Kormos RL, Murali S, et al. Myocardial recovery using ventricular assist devices: prevalence, clinical characteristics, and outcomes. Circulation. 2005;112(9 Suppl):I32–6.

    PubMed  Google Scholar 

  26. Saito S, Yamazaki K, Nishinaka T, et al. Post-approval study of a highly pulsed, low-shear-rate, continuous-flow, left ventricular assist device, EVAHEART: a Japanese multicenter study using J-MACS. J Heart Lung Transpl. 2014;33(6):599–608.

    Article  Google Scholar 

  27. Saito S, Matsumiya G, Sakaguchi T, et al. Cardiac fibrosis and cellular hypertrophy decrease the degree of reverse remodeling and improvement in cardiac function during left ventricular assist. J Heart Lung Transpl. 2010;29(6):672–9.

    Article  Google Scholar 

  28. Agostini D, Carrio I, Verberne HJ. How to use myocardial 123I-MIBG scintigraphy in chronic heart failure. Eur J Nucl Med Mol Imaging. 2009;36(4):555–9.

    Article  PubMed  Google Scholar 

  29. Imamura T, Kinugawa K, Nitta D, et al. Lower rotation speed stimulates sympathetic activation during continuous-flow left ventricular assist device treatment. J Artif Organs. 2015;18(1):20–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Teruhiko Imamura or Koichiro Kinugawa.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imamura, T., Kinugawa, K., Nitta, D. et al. Preoperative iodine-123 meta-iodobenzylguanidine imaging is a novel predictor of left ventricular reverse remodeling during treatment with a left ventricular assist device. J Artif Organs 19, 29–36 (2016). https://doi.org/10.1007/s10047-015-0857-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-015-0857-6

Keywords

Navigation