Skip to main content
Log in

Establishment of a total liquid ventilation system using saline-based oxygen micro/nano-bubble dispersions in rats

  • Original Article
  • Artificial Lung / ECMO
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Micro/nano-bubbles are practical nanomaterials designed to increase the gas content in liquids. We attempted to use oxygen micro/nano-bubble dispersions as an oxygen-rich liquid as a means for total liquid ventilation. To determine the oxygen content in the bubble dispersion, a new method based on a spectrophotometric change between oxy- and deoxy-hemoglobin was established. The oxygen micro/nano-bubble dispersion was supplied to an experimental total ventilation liquid in anesthetic rats. Though the amount of dissolving oxygen was as low as 6 mg/L in physiological saline, the oxygen content in the oxygen micro/nano-bubble dispersion was increased to 45 mg/L. The positive correlation between the oxygen content and the life-saving time under liquid ventilation clearly indicates that the life-saving time is prolonged by increasing the oxygen content in the oxygen micro/nano-bubble dispersion. This is the first report indicating that the oxygen micro/nano-bubbles containing a sufficient amount of oxygen are useful in producing oxygen-rich liquid for the process of liquid ventilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Clark LC Jr, Gollan F. Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure. Science. 1966;152:1755–6.

    Article  CAS  PubMed  Google Scholar 

  2. Funhrman BP, Paczan PR, DeFrancisis M. Perfluorocarbon-associated gas exchange. Crit Care Med. 1991;19:712–22.

    Article  Google Scholar 

  3. Moskowitz GD. A mechanical respirator for control of liquid breathing. Fed Proc. 1970;29:1751–2.

    CAS  PubMed  Google Scholar 

  4. Tawfic QA, Kausalya R. Liquid ventilation. Oman Med J. 2011;26:4–9.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Kacmarek RM, Wiedemann HP, Lavin PT, Wedel MK, Tütüncü AS, Slutsky AS. Partial liquid ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;173:882–9.

    Article  PubMed  Google Scholar 

  6. Hirschl RB, Croce M, Gore D, Wiedemann H, Davis K, Zwischenberger J, Bartlett RH. Prospective, randomized, controlled pilot study of partial liquid ventilation in adult acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002;165:781–7.

    Article  PubMed  Google Scholar 

  7. Leanch CL, Greenspan JS, Rubenstein SD, Shaffer TH, Wolfson MR, Jackson JC, Delemos R, Fuhrman BP. Partial liquid ventilation with perflubron in premature infants with severe respiratory distress syndrome. N Engl J Med. 1996;335:761–7.

    Article  Google Scholar 

  8. Tamura M, Nakamura T. Principle and clinical application of liquid ventilation. Shinshu Med J. 2001;49:239–48.

    CAS  Google Scholar 

  9. Cox CA, Fox WW, Weiss CM, Wolfson MR, Shaffer TH. Liquid ventilation: gas exchange, perfluorochemical uptake, and biodistribution in an acute lung injury. Pediatr Crit Care Med. 2002;3:288–96.

    Article  PubMed  Google Scholar 

  10. Jiang L, Wang Q, Liu Y, Du M, Shen X, Guo X, Wu S. Total liquid ventilation reduces lung injury in piglets after cardioplumonary bypass. Ann Thorac Surg. 2006;82:124–30.

    Article  PubMed  Google Scholar 

  11. Tsagogiorgas C, Alb M, Herrmann P, Quintel M, Meinhardt JP. Cardiopulmonary function and oxygen delivery during total liquid ventilation. Pediaric Pulmonol. 2011;46:964–75.

    Article  Google Scholar 

  12. Lowe KC. Perfluorinated blood substitutes and artificial oxygen carriers. Blood Rev. 1999;13:171–84.

    Article  CAS  PubMed  Google Scholar 

  13. Takahashi M, Chiba K, Li P. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. J Phys Chem B. 2007;111:1343–7.

    Article  CAS  PubMed  Google Scholar 

  14. Bisazza A, Giustetto P, Rolfo A, Caniggia I, Balbis S, Guiot C, Cavalli R. Microbubble-mediated oxygen delivery to hypoxic tissues as a new therapeutic device. In: Conference Proceedings IEEE Engineering Med Biol Society 2008; 2067–2070.

  15. Cavalli R, Bisazza A, Giustetto P, Civra A, Lembo D, Trotta G, Guiot C, Trotta M. Preparation and characterization of dextran nanobubbles for oxygen delivery. Int J Pharm. 2009;381:160–5.

    Article  CAS  PubMed  Google Scholar 

  16. Matsuki N, Ichiba S, Ishikawa T, Nagano O, Takeda M, Ujike Y, Yamaguchi T. Blood oxygenation using micro bubble suspensions. Eur Biophys J. 2012;41:571–8.

    Article  CAS  PubMed  Google Scholar 

  17. Matsuda K, Sawada S, Bartlett RH, Hirschl RB. Effect of ventilatory variables on gas exchange and hemodynamics during total liquid ventilation in a rat model. Crit Care Med. 2003;31:2034–40.

    Article  PubMed  Google Scholar 

  18. Swanson EJ, Mohan V, Kheir J, Borden MA. Phospholipid-stabilized microbubble foam for injectable oxygen delivery. Langmuir. 2010;26:15726–9.

    Article  CAS  PubMed  Google Scholar 

  19. Ebina K, Shi K, Hashimoto J. Oxygen and Air Nanobubble water solution promote the growth of plants, fishes, and mice. PLoS One. 2013;8:1–7.

    Google Scholar 

Download references

Acknowledgments

We thank IDEC CORPORATION for renting Generator C (Ultrafine GALF), Dr. Masayuki Ohmori (Chuo University, Institute of Science and Engineering) for providing Generator B (A-01) and also advice on the operations of generating micro/nano-bubbles and Ms. Nastuko Kuroki and Dr. Shuji Owada (Waseda University, Department of Resources and Environmental Engineering) for measuring a laser diffraction particle size analyzer (SALD-3100).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenichi Matsuda or Shinji Takeoka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 744 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakiuchi, K., Matsuda, K., Harii, N. et al. Establishment of a total liquid ventilation system using saline-based oxygen micro/nano-bubble dispersions in rats. J Artif Organs 18, 220–227 (2015). https://doi.org/10.1007/s10047-015-0835-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-015-0835-z

Keywords

Navigation