Skip to main content
Log in

Development of a thermodynamic control system for the Fontan circulation pulsation device using shape memory alloy fibers

  • Original Article
  • Artificial Heart (Basic)
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

The Fontan procedure is one of the common surgical treatments for circulatory reconstruction in pediatric patients with congenital heart disease. In Fontan circulation, low pulsatility may induce localized lung ischemia and may impair the development of pulmonary peripheral endothelial cells. To promote pulmonary circulation in Fontan circulation, we have been developing a pediatric pulmonary circulatory pulsation device using shape memory alloy fibers attached from the outside of total cavopulmonary connection. In this study, we developed a new thermal control system for the device and examined its functions. We mounted on the device 16 fibers connected in parallel around an ePTFE graft circumferentially. To provide optimized contraction, we designed the new thermal control system. The system consisted of a thermistor, a pressure sensor, and a regulator that was controlled by the adaptive thermodynamic transfer functions. We monitored the parameters and calculated heat transfer function as well as pressure distribution on the graft surface. Then we examined and compared the dynamic contractile pressure and changes in surface temperature. As a result, by the application of the control based on the new feedback system analysis, the circumferential contractile pressure increased by 35 %. The adaptive thermodynamic regulation was useful for the selection of alternative thresholds of the surface temperature of the graft. The system could achieve effective contraction for the pulsatile flow generation by the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax. 1971;26:240–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Humes RA, Feldt RH, Porter CJ, Julsrud PR, et al. The modified Fontan operation for asplenia and polysplenia syndromes. J Thorac Cardiovasc Surg. 1988;96:212–8.

    CAS  PubMed  Google Scholar 

  3. Marcelletti C, Corno A, et al. Inferior vena cava-pulmonary artery extracardiac conduit. A new form of right heart bypass. J Thorac Cardiovasc Surg. 1990;100:228–32.

    CAS  PubMed  Google Scholar 

  4. Cochrane AD, Brizard CP, Penny DJ. Management of the univentricular connection: are we improving? Eur J Cardiothorac Surg. 1997;12:107–15.

    Article  CAS  PubMed  Google Scholar 

  5. de Leval MR. The Fontan circulation: what we have learned? What to expect? Pediatr Cardiol. 1998;19:316–20.

    Article  PubMed  Google Scholar 

  6. Henaine R, Vergnat M, Bacha EA, Baudet B, Lambert V, Belli E, Serraf A. Effects of lack of pulsatility on pulmonary endothelial function in the Fontan circulation. J Thorac Cardiovasc Surg. 2013;146:522–9.

    Article  CAS  PubMed  Google Scholar 

  7. Tamaki S, Kawazoe K, Yagihara T, et al. A model to simulate the hemodynamic effects of right heart pulsatile flow after modified Fontan procedure. Br Heart J. 1992;67:177–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. ACCF Heart Failure and Transplant and Transplant Committee, AHA Heart Failure and Transplantation Committee, and Heart Failure Society of America. ACCF/AHA/HFSA 2011 Survey results: current staffing profile of heart failure programs, including programs that perform heart transplant and mechanical circulatory support device implantation. J Am Coll Cardiol. 2011;17(5):349–58.

    Article  Google Scholar 

  9. Yamane T. The present and future state of artificial heart technology. J Artif Organs. 2002;5:149–55.

    Article  Google Scholar 

  10. Norman JC. The role of assist devices in managing low cardiac output. Cardio Dis Texas Heart Inst Bull. 1981;8:119–52.

    Google Scholar 

  11. Sidiropoulos A, Hotz H, Konerts W. Pediatric circulatory support. J Heart Lung Transpl. 1998;11:1172–6.

    Google Scholar 

  12. Shum-Tim D, Duncan BD, Hraska V, Friehs I. Shin’oka T, and Jonas RA. Evaluation of a pulsatile pediatric ventricular assist device in an acute right heart failure model. Ann Thorac Surg. 1997;64:1374–80.

    Article  CAS  PubMed  Google Scholar 

  13. Shiraishi Y, Yamada A, Mochizuki S, Yambe T, et al. Structural design of a newly developed pediatric circulatory assist device for Fontan circulation by using shape memory alloy fiber. Conf Prof IEEE Eng Med Biol Soc. 2011;2011:8353–5.

    CAS  Google Scholar 

  14. Yamada A, Shiraishi Y, Miura H, Yambe T, Omran MH, Shiga T, Tsuboko Y, Homma D, Yamagishi M. Peristaltic hemodynamics of a new pediatric circulatory assist system for Fontan circulation using shape memory alloy fibers. Conf Prof IEEE Eng Med Biol Soc. 2013;2013:683–6.

    CAS  Google Scholar 

  15. Homma D, Uemura S, Nakazawa F. Functional anisotropic shape memory alloy fiber and differential servo actuator. In: Proceedings of the International Conference Shape Memory Superelastic Technologies. Tsukuba; 2007. p. 463–72.

  16. Shiraishi Y, Yambe T, et al. Development of an artificial myocardium using a covalent shape-memory alloy fiber and its cardiovascular diagnostic response. Conf Proc IEEE Eng Med Biol Soc. 2005;1:406–8.

    CAS  PubMed  Google Scholar 

  17. Shiraishi Y, Yambe T, et al. Assessment of synchronization measures for effective ventricular support by using the shape memory alloy fibred artificial myocardium. Conf Prof IEEE Eng Med Biol Soc. 2009;2009:3047–50.

    CAS  Google Scholar 

  18. Voss B, Sack FU, Saggau W, Hagl S, Lange R. Atrial cardiomyoplasty in a Fontan circulation. Eur J Cardiothorac Surg. 2002;21:780–6.

    Article  PubMed  Google Scholar 

  19. Riemer RK, Amir G, Reichenbach SH, Reinhartz O. “Mechanical support of total cavopulmonary connection with an axial flow pump. J Thorac Cardiovasc Surg. 2005;130:351–4.

    Article  PubMed  Google Scholar 

  20. Bhavsar SS, Kapadia JY, Chopski SG, Throckmorton AL. Intravascular mechanical cavopulmonary assistance for patients with failing Fontan physiology. Artif Organs. 2009;33:977–87.

    Article  PubMed  Google Scholar 

  21. Rodefeld MD, Frankel SH, Giridharan GA. Cavopulmonary assist: (em) powering the univentricular Fontan circulation. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2003;14:45–54.

    Article  Google Scholar 

  22. Hjortdal VE, Emmertsen K, Stenbøg E, Fründ T, Rahbek M, Kromann O, Sørensen K, Pedersen EM. Effects of exercise and respiration on blood flow in total cavopulmonary connection a real-time magnetic resonance flow study. Circulation. 2003;108:1227–31.

    Article  CAS  PubMed  Google Scholar 

  23. Vukicevic M, Chiulli JA, Conover T, Pennati G, Hsia TY, Figliola RS. Mock circulatory system of the Fontan circulation to study respiration effects on venous flow behavior. ASAIO J. 1992;59:253–60.

    Article  Google Scholar 

  24. Kogon BE, Plattner C, Leong T, Simsic J, Kirshborn PM, Kanter KR. The bidirectional Glenn operation: a risk factor analysis for morbidity and mortality. J Thorac Cardiovasc Surg. 2008;136:1237–42.

    Article  PubMed  Google Scholar 

  25. Malhotra SP, Ivy DD, Mitchell MB, Campbell DN, Dines ML, Miyamoto S, Kay J, Clarke DR, Lacour-Gayet F. Performance of cavopulmonary palliation at elevated altitude: midterm outcomes and risk factors for failure. Circulation. 2008;118:S177–81.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kaza AK, Kaza E, Bullock E, Reyna S, Yetman A, Everitt MD. Pulmonary vascular remodeling after heart transplantation in patients with cavopulmonary connection. Eur J Cardiothorac Surg. 2015;47(3):505–10.

    Article  PubMed  Google Scholar 

  27. Tedford RJ, Hassoun PM, Mathai SC, Girgis RE, Russell SD, Thiemann DR, Mudd JO, Borlang BA, Redfield MM, Lederer DJ, Kass DA. Pulmonary capillary wedge pressure augments right ventricular pulsatile loading. Circulation. 2012;125:289–97.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Sherman C, Daly BD, Clay W, Dasse K, Handrahan J, Haudenschild C. In vivo evaluations of a transcutaneous energy transmission (TET) system. Trans Am Soc Artif Intern Organs. 1984;30:143–7.

    CAS  PubMed  Google Scholar 

  29. Miura H, Saito I, Sato F, Shiraishi Y, Yambe T, Matsuki H. A new control method depending on primary phase angle of transcutaneous energy transmission system for artificial heart. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:5723–6.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 25282126, 26560199, and JSPS Fellows Grant Number 26·6949. 

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yasuyuki Shiraishi or Tomoyuki Yambe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, A., Shiraishi, Y., Miura, H. et al. Development of a thermodynamic control system for the Fontan circulation pulsation device using shape memory alloy fibers. J Artif Organs 18, 199–205 (2015). https://doi.org/10.1007/s10047-015-0827-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-015-0827-z

Keywords

Navigation