Skip to main content

Advertisement

Log in

Tissue-engineered skin substitutes: an overview

  • Review
  • Artificial Skin, Muscle, Bone / Joint, Neuron
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Extensive skin loss and chronic wounds are still a significant challenge to clinicians: even if injured epidermis is normally able to self-renew, deep injuries can cause negative regulation of the wound healing cascade, leading to chronic wound formation. Skin-autografting surgical procedures are often limited by the poor availability of healthy tissue, whereas the use of non-self-tissues for allografts presents some severe risks. Tissue-engineered skin substitutes have recently become viable as a suitable alternative to auto- and allografts. However, biologists, biochemists, and technical engineers are still struggling to produce complex skin substitutes that can readily be transplanted in large quantities. The ambitious goal is now to construct a dermoepidermal substitute that rapidly vascularizes and optimally supports a stratifying epidermal graft on a biodegradable matrix. This review analyzes these aspects in light of the available literature and the authors’ experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alonso L, Fuchs E. Stem cells of the skin epithelium. Proc Natl Acad Sci USA. 2003;100:11830–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Ponec M. Skin constructs for replacement of skin tissues for in vitro testing. Adv Drug Deliv Rev. 2002;54:S19–30.

    Article  PubMed  CAS  Google Scholar 

  3. De Mel A, Seifalian AM, Birchall MA. Orchestrating cell/material interactions for tissue engineering of surgical implants. Macromol Biosci. 2012;12:1010–21.

    Article  PubMed  Google Scholar 

  4. Metcalfe AD, Ferguson MW. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface. 2007;4:413–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60:184–98.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Midwood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol. 2004;36:1031–7.

    Article  PubMed  CAS  Google Scholar 

  7. Mascré G, Dekoninck S, Drogat B, Youssef KK, Broheé S, Sotiropoulou PA, Simons BD, Blanpain C. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature. 2012;489:257–62.

    Article  PubMed  Google Scholar 

  8. De Rosa L, De Luca M. Cell biology: dormant and restless skin stem cells. Nature. 2012;489:215–7.

    Article  PubMed  Google Scholar 

  9. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell. 2004;118:635–48.

    Article  PubMed  CAS  Google Scholar 

  10. Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci. 2004;9:283–9.

    Article  PubMed  CAS  Google Scholar 

  11. Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2010;7:229–58.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Halim AS, Khoo TL, Mohd Yussof SJ. Biologic and synthetic skin substitutes: An overview. Indian J Plast Surg. 2010;43:S23–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zilberman M, Elsner JJ. Antibiotic-eluting medical devices for various applications. J Control Release. 2008;130:202–15.

    Article  PubMed  CAS  Google Scholar 

  14. Wolfe RA, Roi LD, Flora JD, Feller I, Cornell RG. Mortality differences and speed of wound closure among specialized burn care facilities. JAMA. 1983;250:763–6.

    Article  PubMed  CAS  Google Scholar 

  15. McHeik JN, Barrault C, Pedretti N, Garnier J, Juchaux F, Levard G, Morel F, Lecron JC, Bernard FX. Foreskin-isolated keratinocytes provide successful extemporaneous autologous paediatric skin grafts. J Tissue Eng Regen Med. 2013. doi:10.1002/term.1690

  16. Cardinal M, Eisenbud DE, Armostrong DG, Zelen C, Driver V, Attinger C, et al. Serial surgical debridement: a retrospective study on clinical outcomes in chronic lower extremity wounds. Wound Repair Regen. 2009;17:306–11.

    Article  PubMed  Google Scholar 

  17. Kroner E, Kaiser JS, Fischer SC, Arzt E. Bioinspired polymeric surface patterns for medical applications. J Appl Biomater Funct Mater. 2012;10:287–92.

    PubMed  Google Scholar 

  18. Bernerd F, Asselineau D. An organotypic model of skin to study photodamage and photoprotection in vitro. J Am Acad Dermatol. 2008;58:S155–9.

    Article  PubMed  Google Scholar 

  19. Lelièvre D, Justine P, Christiaens F, Bonaventure N, Coutet J, Marrot L, et al. The episkin phototoxicity assay (EPA): development of an in vitro tiered strategy using 17 reference chemicals to predict phototoxic potency. Toxicol In Vitro. 2007;21:977–95.

    Article  PubMed  Google Scholar 

  20. Freshney RI. Culture of animal cells. A manual of basic techniques. New York: Wiley & Liss Ed; 2000.

    Google Scholar 

  21. Boehnke K, Mirancea N, Pavesio A, Fusenig NE, Boukamp P, Stark HJ. Effects of fibroblasts and microenvironment on epidermal regeneration and tissue function in long-term skin equivalents. Eur J Cell Biol. 2007;86:731–46.

    Article  PubMed  CAS  Google Scholar 

  22. Sun T, Jackson S, Haycock JW, MacNeil S. Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. J Biotechnol. 2006;122:372–81.

    Article  PubMed  CAS  Google Scholar 

  23. Fransson J, Heffler LC, Tengvall Linder M, Scheynius A. Culture of human epidermal Langerhans cells in a skin equivalent. Br J Dermatol. 1998;139:598–604.

    Article  PubMed  CAS  Google Scholar 

  24. An initial evaluation of the safety and activity of Celaderm (TM) treatment regimens in healing venous leg ulcers. Clinical trial from Shire Regenerative Medicine, Inc. U.S. National Institutes of Health (January 19, 2012) NCT00399308.

  25. Gordley K, Cole P, Hicks J, Hollier L. A comparative, long term assessment of soft tissue substitutes: AlloDerm, Enduragen, and Dermamatrix. J Plast Reconstr Aesthet Surg. 2009;62:849–50.

    Article  PubMed  Google Scholar 

  26. Mansbridge J. Commercial considerations in tissue engineering. J Anat. 2006;209:527–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Lev-Tov H, Li CS, Dahle S, Isseroff RR. Cellular versus acellular matrix devices in treatment of diabetic foot ulcers: study protocol for a comparative efficacy randomized controlled trial. Trials. 2013;9:8.

    Article  Google Scholar 

  28. Ackermann K, Lombardi Borgia S, Korting H, Mewes K, Schäfer-Korting M. The Phenion® full-thickness skin model for percutaneous absorption testing. Skin Pharmacol Physiol. 2010;23:105–12.

    Article  PubMed  CAS  Google Scholar 

  29. Stark HJ, Boehnke K, Mirancea N, Willhauck MJ, Pavesio A, Fusenig NE, et al. Epidermal homeostasis in long-term scaffold-enforced skin equivalents. J Investig Dermatol Symp Proc. 2006;11:93–105.

    Article  PubMed  CAS  Google Scholar 

  30. Lindberg K, Badylak SF. Porcine small intestinal submucosa (SIS): a bioscaffold supporting in vitro primary human epidermal cell differentiation and synthesis of basement membrane proteins. Burns. 2001;27:254–66.

    Article  PubMed  CAS  Google Scholar 

  31. Ng KW, Hutmacher DW. Reduced contraction of skin equivalent engineered using cell sheets cultured in 3D matrices. Biomaterials. 2006;27:4591–8.

    Article  PubMed  CAS  Google Scholar 

  32. Salernitano E, Migliaresi C. Composite materials for biomedical applications: a review. J Appl Biomater Biomech. 2003;1:3–18.

    PubMed  CAS  Google Scholar 

  33. Liu Y, Luo H, Wang X, Takemura A, Fang YR, Jin Y, et al. In vitro construction of scaffold-free bilayered tissue-engineered skin containing capillary networks. Biomed Res Int. 2013;2013:561410. doi:10.1155/2013/561410.

    PubMed  PubMed Central  Google Scholar 

  34. Nör JE, Christensen J, Mooney DJ, Polverini PJ. Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am J Pathol. 1999;154:375–84.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Trochon V, Li H, Vasse M, Frankenne F, Thomaidis A, Soria J, et al. Endothelial metalloprotease-disintegrin protein (ADAM) is implicated in angiogenesis in vitro. Angiogenesis. 1998;2:277–85.

    Article  PubMed  CAS  Google Scholar 

  36. Ponec M, El Ghalbzouri A, Dijkman R, Kempenaar J, van der Pluijm G, et al. Endothelial network formed with human dermal microvascular endothelial cells in autologous multicellular skin substitutes. Angiogenesis. 2004;7:295–305.

    Article  PubMed  CAS  Google Scholar 

  37. Welss T, Basketter DA, Schroder KR. In vitro skin irritation: facts and future. State of the art review of mechanisms and models. Toxicol In Vitro. 2004;18:231–43.

    Article  PubMed  CAS  Google Scholar 

  38. Oliver GJ, Pemberton MA, Rhodes C. An in vitro model for identifying skin corrosive chemicals. I. Initial validation. Toxicol In Vitro. 1988;2:7–17.

    Article  PubMed  CAS  Google Scholar 

  39. Stobbe JL, Drake KD, Maier KJ. Comparison of in vivo (Draize method) and in vitro (Corrositex assay) dermal corrosion values for selected industrial chemicals. Int J Toxicol. 2003;22:99–107.

    Article  PubMed  CAS  Google Scholar 

  40. ESAC Peer Review Panel Consensus Report on the EST1000 in vitro test method for 50 assessing skin corrosion in vitro. 2009.

  41. Perkins MA, Osborne R, Rana FR, Ghassemi A, Robinson MK. Comparison of in vitro and in vivo human skin responses to consumer products and ingredients with a range of irritancy potential. Toxicol Sci. 1999;48:218–29.

    Article  PubMed  CAS  Google Scholar 

  42. Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem Photobiol. 2008;84:539–49.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Maresca V, Flori E, Briganti S, Camera E, Cario-André M, Taïeb A, et al. UVA-induced modification of catalase charge properties in the epidermis is correlated with the skin phototype. J Investig Dermatol. 2006;126:182–90.

    Article  PubMed  CAS  Google Scholar 

  44. Rimondini L, Fini M, Giardino R. The microbial infection of biomaterials: A challenge for clinicians and researchers. A short review. J Appl Biomater Biomech. 2005;3:1–10.

    PubMed  CAS  Google Scholar 

  45. Azzimonti B, Dell’oste V, Borgogna C, Mondini M, Gugliesi F, De Andrea M, et al. The epithelial-mesenchymal transition induced by keratinocyte growth conditions is overcome by E6 and E7 from HPV16, but not HPV8 and HPV38: characterization of global transcription profiles. Virology. 2009;388:260–9.

    Article  PubMed  CAS  Google Scholar 

  46. Borgogna C, Zavattaro E, De Andrea M, Griffin HM, Dell’Oste V, Azzimonti B, et al. Characterization of beta papillomavirus E4 expression in tumours from Epidermodysplasia Verruciformis patients and in experimental models. Virology. 2012;423:195–204.

    Article  PubMed  CAS  Google Scholar 

  47. Tfayli A, Piot O, Draux F, Pitre F, Manfait M. Molecular characterization of reconstructed skin model by Raman microspectroscopy: comparison with excised human skin. Biopolymers. 2007;87:261–74.

    Article  PubMed  CAS  Google Scholar 

  48. Marston WA, Hanft J, Norwood P, Pollak R. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care. 2003;26:1701–5.

    Article  PubMed  Google Scholar 

  49. Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng. 1981;103:177–85.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lia Rimondini or Barbara Azzimonti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catalano, E., Cochis, A., Varoni, E. et al. Tissue-engineered skin substitutes: an overview. J Artif Organs 16, 397–403 (2013). https://doi.org/10.1007/s10047-013-0734-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-013-0734-0

Keywords

Navigation