Journal of Artificial Organs

, Volume 16, Issue 1, pp 9–22 | Cite as

Wearable and implantable pancreas substitutes

Review

Abstract

A lifelong-implanted and completely automated artificial or bioartificial pancreas (BAP) is the holy grail for type 1 diabetes treatment, and could be a definitive solution even for other severe pathologies, such as pancreatitis and pancreas cancer. Technology has made several important steps forward in the last years, providing new hope for the realization of such devices, whose feasibility is strictly connected to advances in glucose sensor technology, subcutaneous and intraperitoneal insulin pump development, the design of closed-loop control algorithms for mechatronic pancreases, as well as cell and tissue engineering and cell encapsulation for biohybrid pancreases. Furthermore, smart integration of the mentioned components and biocompatibility issues must be addressed, bearing in mind that, for mechatronic pancreases, it is most important to consider how to recharge implanted batteries and refill implanted insulin reservoirs without requiring periodic surgical interventions. This review describes recent advancements in technologies and concepts related to artificial and bioartificial pancreases, and assesses how far we are from a lifelong-implanted and self-working pancreas substitute that can fully restore the quality of life of a diabetic (or other type of) patient.

Keywords

Artificial pancreas Bioartificial pancreas Artificial organs Diabetes management Pancreas substitutes 

References

  1. 1.
    Onkamo P, Väänänen S, Karvonen M, Tuomilehto J. Worldwide increase in incidence of type I diabetes—the analysis of the data on published incidence trends. Diabetologia. 1999;42:1395–403.Google Scholar
  2. 2.
    Howorka R, Wilinska ME, Chassin LJ, Dunger DB. Roadmap to the artificial pancreas. Diabetes Res Clin Pract. 2006;74:S178–82.CrossRefGoogle Scholar
  3. 3.
    Steil GM, Panteleon AE, Rebrin K. Closed-loop insulin delivery—the path to physiological glucose control. Adv Drug Deliv Rev. 2004;56:125–44.PubMedCrossRefGoogle Scholar
  4. 4.
    Kelly WD, Lillehei RC, Merkel FK, Idezuki Y, Goetz FC. Allotransplantation of the pancreas and duodenum along with the kidney in diabetic nephropathy. Surgery. 1967;61:827–37.PubMedGoogle Scholar
  5. 5.
    Selam JL, Charles MA. Devices for insulin administration. Diabetes Care. 1990;13:955–79.PubMedCrossRefGoogle Scholar
  6. 6.
    Renard E. Insulin delivery route for the artificial pancreas: subcutaneous, intraperitoneal, or intravenous? Pros and cons. J Diab Sci Tech. 2008;2:735–8.Google Scholar
  7. 7.
    Broussolle C, Jeandidier N, Hanaire-Broutin H. French multicentre experience with implantable insulin pumps. The EVADIAC Study Group. Lancet. 1994;343:514–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Renard E, Place J, Cantwell M, Chevassus H, Palerm CC. Closed-loop insulin delivery using a subcutaneous glucose sensor and intraperitoneal insulin delivery. Diabetes Care. 2010;33:121–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Animas® Corporation. Insulin pump product information (updated March 8, 2012). http://www.animas.com.
  10. 10.
    Medtronic, Inc. Insulin pump product information (updated March 8, 2012). http://www.medtronic.com.
  11. 11.
    Pickup J, Keen H. Continuous subcutaneous insulin infusion at 25 years: evidence base for the expanding use of insulin pump therapy in type 1 diabetes. Diabetes Care. 2002;25:593–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Renard E, Bouteleau S, Jacques-Apostol S, Lauton D, Gibert-Boulet F, Costalat G, Bringer J, Jaffiol C. Insulin underdelivery from implanted pumps using peritoneal route. Diabetes Care. 1996;19:812–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Olsen CL, Chan E, Turner DS. Insulin antibody responses after long-term intraperitoneal insulin administration via implantable programmable insulin delivery systems. Diabetes Care. 1994;17:169–76.PubMedCrossRefGoogle Scholar
  14. 14.
    Renard E, Costalat G, Chevassus H, Bringer J. Artificial beta-cell: clinical experience toward an implantable closed-loop insulin delivery system. Diab Metabol. 2006;32:497–502.CrossRefGoogle Scholar
  15. 15.
    LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol. 2003;21:1184–91.PubMedCrossRefGoogle Scholar
  16. 16.
    Adiga SP, Curtiss LA, Elam JW, Pellin MJ, Shih CC, Shih CM, Lin SJ, Su YY, Gittard SD, Zhang J, Narayan RJ. Nanoporous materials for biomedical devices. J Min Met Mater Soc. 2008;60:26–32.CrossRefGoogle Scholar
  17. 17.
    Cabral J, Moratti SC. Hydrogels for biomedical applications. Future Med Chem. 2011;3:1877–88.PubMedCrossRefGoogle Scholar
  18. 18.
    Updike SJ, Hicks GP. The enzyme electrode. Nature. 1967;214:986–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Mastrotaro JJ. The MiniMed continuous glucose monitoring system (CGMS). J Pediatr Endocrinol Metab. 1999;12:751–8.Google Scholar
  20. 20.
    Mastrotaro JJ. The MiniMed continuous glucose monitoring system. Diabetes Technol Ther. 2000;2:S13–8.CrossRefGoogle Scholar
  21. 21.
    Gerritsen M, Jansen JA, Lutterman JA. Subcutaneously implantable glucose sensors in patients with diabetes mellitus; still many problems. Ned Tijdschr Geneeskd. 2002;146:1313–6.PubMedGoogle Scholar
  22. 22.
    Armour JC, Lucisano JY, McKean BD, Gough DA. Application of chronic intravascular blood glucose sensor in dogs. Diabetes. 1990;39:1519–26.PubMedCrossRefGoogle Scholar
  23. 23.
    Gough DA, Armour JC. Development of the implantable glucose sensor. What are the prospects and why is it taking so long? Diabetes. 1995;44:1005–9.PubMedGoogle Scholar
  24. 24.
    Skyler JS. Continuous glucose monitoring: an overview of its development. Diabetes Technol Ther. 2009;11:S5–10.PubMedCrossRefGoogle Scholar
  25. 25.
    Rebrin K, Steil GM, Van Antwerp WP, Mastrotaro JJ. Subcutaneous glucose predicts plasma glucose independent of insulin: implications for continuous monitoring. Am J Physiol. 1999;277:E561–71.PubMedGoogle Scholar
  26. 26.
    Rebrin K, Steil GM. Can interstitial glucose assessment replace blood glucose measurements? Diabetes Technol Ther. 2000;2:461–72.PubMedCrossRefGoogle Scholar
  27. 27.
    Steil GM, Rebrin K, Hariri F, Jinagonda S, Tadros S, Darwin C, Saad MF. Interstitial fluid glucose dynamics during insulin-induced hypoglycaemia. Diabetologia. 2005;48:1833–40.PubMedCrossRefGoogle Scholar
  28. 28.
    Buckingham BA, Kollman C, Beck R, Kalajian A, Fiallo-Scharer R, Tansey MJ, Fox LA, Wilson DM, Weinzimer SA, Ruedy KJ, Tamborlane WV. Evaluation of factors affecting CGMS calibration. Diabetes Technol Ther. 2006;8:318–25.PubMedCrossRefGoogle Scholar
  29. 29.
    Zucchini S, Scipione M, Balsamo C, Maltoni G, Rollo A, Molinari E, Mangoni L, Cicognani A. Comparison between sensor-augmented insulin therapy with continuous subcutaneous insulin infusion or multiple daily injections in everyday life: 3-day analysis of glucose patterns and sensor accuracy in children. Diabetes Technol Ther. 2011;13:1187–93.PubMedCrossRefGoogle Scholar
  30. 30.
    Keenan DB, Grosman B, Clark HW, Roy A, Weinzimer SA, Shah RV, Mastrotaro JJ. Continuous glucose monitoring considerations for the development of a closed-loop artificial pancreas system. J Diabetes Sci Technol. 2011;5:1327–36.PubMedGoogle Scholar
  31. 31.
    Keenan DB, Mastrotaro JJ, Zisser H, Cooper KA, Raghavendhar G, Lee WS, Yusi J, Bailey TS, Brazg RL, Shah R. Accuracy of the Enlite 6-day glucose sensor with Guardian and Veo calibration algorithms. Diabetes Technol Ther. 2012;14:225–31.PubMedCrossRefGoogle Scholar
  32. 32.
    Renard E. Implantable continuous glucose sensors. Curr Diab Rev. 2008;4:169–74.CrossRefGoogle Scholar
  33. 33.
    Renard E, Shah R, Miller M, Kolopp M, Costalat G, Bringer J. Sustained safety and accuracy of central IV glucose sensors connected to implanted insulin pumps and short term closed-loop trials in diabetic patients. Diabetes. 2003;52:A36.Google Scholar
  34. 34.
    Magni L, Forgione M, Toffanin C, Dalla Man C, De Nicolao G, Kovatchev B, Cobelli C. Run-to-run tuning of model predictive control for type I diabetic subjects: an in silico trial. J Diabetes Sci. 2009;3:1091–8.Google Scholar
  35. 35.
    Lee H, Buckingham BA, Wilson DM, Bequette BW. A closed-loop artificial pancreas using model predictive control and a sliding meal size estimation. J Diabetes Sci Technol. 2009;3:1082–90.PubMedGoogle Scholar
  36. 36.
    Cobelli C, Cobelli C, Cobelli C, Cobelli C, Cobelli C, Kovatchev BP. Diabetes: models, signals, and control. IEEE Rev Biomed Eng. 2009;2:54–96.PubMedCrossRefGoogle Scholar
  37. 37.
    Bequette BW. A critical assessment of algorithms and challenges in the development of a closed-loop artificial pancreas. Diabetes Technol Ther. 2005;7:28–47.PubMedCrossRefGoogle Scholar
  38. 38.
    Teixeira RE, Malin S. The next generation of artificial pancreas control algorithms. J Diabetes Sci Technol. 2008;2:105–12.PubMedGoogle Scholar
  39. 39.
    El Youssef J, Castle J, Ward WK. A review of closed-loop algorithms for glcemic control in the treatment of type 1 diabetes. Algorithms. 2008;2:518–32.CrossRefGoogle Scholar
  40. 40.
    Steil GM, Rebrin K, Janowski R, Darwin C, Saad MF. Modeling beta-cell insulin secretion-implications for closed-loop glucose homeostasis. Diabetes Technol Ther. 2003;5:953–64.PubMedCrossRefGoogle Scholar
  41. 41.
    Bergman RN, Ider YZ, Bowden CR, Cobelli C. Quantitative estimation of insulin sensitivity. Am J Physiol. 1979;236:E667–77.PubMedGoogle Scholar
  42. 42.
    Cobelli C, Renard E, Kovatchev B. Artificial pancreas: past, present, future. Diabetes. 2011;60:2672–82.PubMedCrossRefGoogle Scholar
  43. 43.
    Hovorka R. Continuous glucose monitoring and closed-loop systems. Diabet Med. 2005;23:1–12.CrossRefGoogle Scholar
  44. 44.
    Kovatchev BP, Cobelli C, Renard E. Multinational study of subcutaneous model-predictive closed-loop control in type 1 diabetes mellitus: summary of the results. J Diab Sci Technol. 2010;4:1374–81.Google Scholar
  45. 45.
    Hovorka R, Allen JM, Elleri D, Chassin LJ, Harris J, Xing D, Kollman C, Hovorka T, Larsen AMF, Nodale M, De Palma A, Wilinska ME, Acerini CL, Dunger DB. Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial. Lancet. 2010;375:743–51.PubMedCrossRefGoogle Scholar
  46. 46.
    El-Khatib FH, Russell SJ, Nathan DM, Sutherlin RG, Damiano ER. A bi-hormonal closed-loop artificial pancreas for type 1 diabetes. Sci Transl Med. 2010;2:27ra27.PubMedCrossRefGoogle Scholar
  47. 47.
    Castle JR, Engle JM, El Youssef J, Massoud RG, Yuen KC, Kagan R, Ward WK. Novel use of glucagon in a closed-loop system for prevention of hypoglycaemia in type 1 diabetes. Diabetes Care. 2010;33:7.CrossRefGoogle Scholar
  48. 48.
    Magni L, Raimondo DM, Bossi L, Dalla Man C, De Nicolao G, Kovatchev B, Cobelli C. Model predictive control of type 1 diabetes: an in silico trial. J Diabetes Sci Technol. 2007;1:12.Google Scholar
  49. 49.
    Kadish AH. Automation control of blood sugar. A servomechanism for glucose monitoring and control. Am J Med Electron. 1964;3:82–6.PubMedGoogle Scholar
  50. 50.
    Fogt EJ, Dodd LM, Jenning EM, Clemens AH. Development and evaluation of a glucose analyzer for a glucose controlled insulin infusion system (Biostator). Clin Chem. 1978;24:1366–72.PubMedGoogle Scholar
  51. 51.
    Clemens AH, Hough DL, D’Orazio PA. Development of the Biostator glucose clamping algorithm. Clin Chem. 1982;28:1899–904.PubMedGoogle Scholar
  52. 52.
    Hoshino M, Haraguchi Y, Hirasawa H, Sakai M, Saegusa H, Hayashi K, Horita N, Ohsawa H. Close relationship of tissue plasminogen activator-plasminogen activator inhibitor-1 complex with multiple organ dysfunction syndrome investigated by means of the artificial pancreas. Crit Care. 2001;5:88–99.PubMedCrossRefGoogle Scholar
  53. 53.
    Hoshino M, Haraguchi Y, Mizushima I, Sakai M. Close relationship between strict blood glucose control, including suppression of blood glucose variability, and mortality reduction in acutely ill patients with glucose intolerance investigated by means of a bedside-type artificial pancreas. J Artif Organs. 2010;13:151–60.PubMedCrossRefGoogle Scholar
  54. 54.
    Jaremko J, Rorstad O. Advances toward the implantable artificial pancreas for the treatment of diabetes. Diabetes Care. 1998;21:444–50.PubMedCrossRefGoogle Scholar
  55. 55.
    Klonoff DC, Cobelli C, Kovatchev B, Zisser HC. Progress in development of an artificial pancreas. J Diabetes Sci Technol. 2009;3:1002–4.PubMedGoogle Scholar
  56. 56.
    Kumareswaran K, Evans ML, Hovorka R. Artificial pancreas: an emerging approach to treat type 1 diabetes. Exp Rev Med Dev. 2009;6:401–10.CrossRefGoogle Scholar
  57. 57.
    Hoshino M, Haraguchi Y, Mizushima I, Sakai M. Recent progress in mechanical artificial pancreas. J Artif Organs. 2009;12:141–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Dassau E, Atlas E, Phillip M. Closing the loop. Int J Clin Pract. 2011;65:20–5.CrossRefGoogle Scholar
  59. 59.
    Gregory JM, Moore DJ. Can technological solutions for diabetes replace islet cell function? Organogenesis. 2011;7:32–41.PubMedCrossRefGoogle Scholar
  60. 60.
    Klonoff DC, Zimliki CL, Stevens A, Beaston P, Pinkos A, Choe SY, Arreaza-Rubín G, Heetderks W. Innovations in technology for the treatment of diabetes: clinical development of the artificial pancreas (an autonomous system). J Diabetes Sci Technol. 2011;5:804–26.PubMedGoogle Scholar
  61. 61.
    Schaller HC, Schaupp L, Bodenlenz M, Wilinska ME, Chassin LJ, Wach P, Vering T, Hovorka R, Pieber TR. On-line adaptive algorithm with glucose prediction capacity for subcutaneous closed-loop control of glucose: evaluation under fasting conditions in patients with type 1 diabetes. Diabet Med. 2006;23:90–3.PubMedCrossRefGoogle Scholar
  62. 62.
    Hovorka R, Canonico V, Chassin LJ, Haueter U, Massi-Benedetti M, Orsini Federici M, Pieber TR, Schaller HC, Schaupp L, Vering T, Wilinska ME. Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas. 2004;25:905–20.PubMedCrossRefGoogle Scholar
  63. 63.
    Kovatchev B, Cobelli C, Renard E, Anderson S, Breton M, Patek S, Clarke W, Bruttomesso D, Maran A, Costa S, Avogaro A, Dalla Man C, Facchinetti A, Magni L, De Nicolao G, Place J, Farret A. Multinational study of subcutaneous model-predictive closed-loop control in type 1 diabetes mellitus: summary of the results. J Diabetes Sci Technol. 2010;4:1374–81.PubMedGoogle Scholar
  64. 64.
    Bruttomesso D, Farret A, Costa S, Marescotti MC, Vettore M, Avogaro A, Tiengo A, Dalla Man C, Place J, Facchinetti A, Guerra S, Magni L, De Nicolao G, Cobelli C, Renard E, Maran A. Closed-loop artificial pancreas using subcutaneous glucose sensing and insulin delivery and a model predictive control algorithm: preliminary studies in Padova and Montpellier. J Diabetes Sci Technol. 2009;3:1014–21.PubMedGoogle Scholar
  65. 65.
    Hovorka R, Kumareswaran K, Harris J, Allen JM, Elleri D, Xing D, Kollman C, Nodale M, Murphy HR, Dunger DB, Amiel SA, Heller SR, Wilinska ME, Evans ML. Overnight closed-loop insulin delivery (artificial pancreas) in adults with type 1 diabetes: crossover randomised controlled studies. Brit Med J. 2011;342:d1911–2.CrossRefGoogle Scholar
  66. 66.
    Renard E. Clinical experience with an implanted closed-loop insulin delivery system. Arq Bras Endocrinol Metabol. 2008;52:349–54.PubMedCrossRefGoogle Scholar
  67. 67.
    El-Khatib FH, Jiang J, Damiano ER. A feasibility study of bihormonal closed-loop blood glucose control using dual subcutaneous infusion of insulin and glucagon in ambulatory diabetic swine. J Diabetes Sci Technol. 2009;3:789–803.PubMedGoogle Scholar
  68. 68.
    El-Khatib FH, Russell SJ, Nathan DM, Sutherlin RG, Damiano ER. A bihormonal closed-loop artificial pancreas for type 1 diabetes. Sci Transl Med. 2010;2:2–27.CrossRefGoogle Scholar
  69. 69.
    Renard E, Place J, Cantwell M, Chevassus H, Palerm CC. Closed-loop insulin delivery using a subcutaneous glucose sensor and intraperitoneal insulin delivery. Feasibility study testing a new model for the artificial pancreas. Diabetes Care. 2009;33:121–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Aberle I, Scholz U, Bach-Kliegel B, Fischer C, Gorny M, Langer K, Kliegel M. Psychological aspects in continuous subcutaneous insulin infusion: a retrospective study. J Psychol Inter Appl. 2009;143:147–60.Google Scholar
  71. 71.
    Hofer SE, Heidtmann B, Raile K, Fröhlich-Reiterer E, Lilienthal E, Berghaeuser MA, Holl RW. Discontinuation of insulin pump treatment in children, adolescents, and young adults. A multicenter analysis based on the DPV database in Germany and Austria. Pediatr Diabetes. 2010;11:116–21.PubMedCrossRefGoogle Scholar
  72. 72.
    Reid G. Biofilms in infection disease and on medical devices. Int J Antimicrob Agents. 1999;11:223–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Schierholz JM, Beuth J. Implant infections: a haven for opportunistic bacteria. J Hosp Infect. 2001;49:87–93.PubMedCrossRefGoogle Scholar
  74. 74.
    Francolini I, Donelli G. Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Microbiol. 2010;59:227–38.PubMedGoogle Scholar
  75. 75.
    Rodrigues LR. Inhibition of bacterial adhesion on medical devices. Adv Exp Med Biol. 2001;715:351–67.CrossRefGoogle Scholar
  76. 76.
    Bloom HL, Constantin L, Dan D, De Lurgio DB, El-Chami M, Ganz LI, Gleed KJ, Hackett FK, Kanuru NK, Lerner DJ, Rasekh A, Simons GR, Sogade FO, Sohail MR. Implantation success and infection in cardiovascular implantable electronic device procedures utilizing an antibacterial envelope. Pacing Clin Electrophysiol. 2011;34:133–42.PubMedCrossRefGoogle Scholar
  77. 77.
    Palchesko RN, McGowan KA, Gawalt ES. Surface immobilization of active vancomycin on calcium aluminium oxide. Mater Sci Eng C. 2011;31:637–42.CrossRefGoogle Scholar
  78. 78.
    Braceras I, Azpiroz P, Briz N, Fratila RM, Oyarbide J, Ipiñazar E, Álvarez N, Atorrasagasti G, Aizpurua JM. Plasma polymerized silylated ciprofloxacin as an antibiotic coating. Plasma Process Polym. 2011;8:599–606.CrossRefGoogle Scholar
  79. 79.
    Satishkumar R, Sankar S, Yurko Y, Lincourt A, Shipp J, Heniford BT, Vertegel A. Evaluation of the antimicrobial activity of lysostaphin-coated hernia repair meshes. Antimicrob Agents Chemother. 2011;55:4379–85.PubMedCrossRefGoogle Scholar
  80. 80.
    Xu LC, Siedlecki CA. Submicron-textured biomaterial surface reduces staphylococcal bacterial adhesion and biofilm formation. Acta Biomater. 2012;8:72–81.PubMedCrossRefGoogle Scholar
  81. 81.
    Arciola CR, Montanaro L, Costerton JW. New trends in diagnosis and control strategies for implant infections. Int J Artif Organs. 2011;34:727–36.PubMedCrossRefGoogle Scholar
  82. 82.
    Lacy P, Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967;16:35–9.PubMedGoogle Scholar
  83. 83.
    Kemp C, Knight M, Scharp D, Lacy P, Ballinger W. Transplantation of isolated pancreatic islets into the portal vein of diabetic rats. Nature. 1973;244:7.CrossRefGoogle Scholar
  84. 84.
    Scharp D, Murphy J, Newton W, Ballinger W, Lacy P. Transplantation of islets of Langerhans in diabetic rhesus monkeys. Surgery. 1975;77:100–5.PubMedGoogle Scholar
  85. 85.
    Ryan EA, Lakey JRT, Rajotte RV, Korbutt GS, Kin T, Imes S, Rabinovitch A, Elliott JF, Bigam D, Kneteman NM, Warnock G, Larsen I, Shapiro AMJ. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes. 2001;50:710–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Hunkeler D. Bioartificial organs transplanted from research to reality. Nat Biotechnol. 1999;17:335–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Lanza RP, Sullivan SJ, Chick WL. Islet transplantation with immunoisolation. Diabetes. 1992;41:1503–10.PubMedCrossRefGoogle Scholar
  88. 88.
    Silva AI, Matos AN, Brons IG, Mateus M. An overview of the development of a bio-artificial pancreas as a treatment of insulin-dependent diabetes mellitus. Med Res Rev. 2006;26:181–222.PubMedCrossRefGoogle Scholar
  89. 89.
    Sumi S. Regenerative medicine for insulin deficiency: creation of pancreatic islets and bioartificial pancreas. J Hepatobiliary Pancreat Sci. 2011;18:6–12.PubMedCrossRefGoogle Scholar
  90. 90.
    Monaco AP, Maki T, Ozato H, Carretta M, Sullivan SJ, Borland KM, Mahoney MD, Chick WL, Muller TE, Wolfrum J, Solomon B. Transplantation of islet allografts and xenografts in totally pancreatectomized diabetic dogs using the hybrid artificial pancreas. Ann Surg. 1991;214:339–62.PubMedCrossRefGoogle Scholar
  91. 91.
    Orsetti A, Hagelsteen C, Zouari N. Temporary normalization of blood sugar, in a totally pancreatectomized dog, after placing an artificial insulin distributor. C R Seances Soc Biol Fil. 1977;171:858–64.PubMedGoogle Scholar
  92. 92.
    Orsetti A, Guy C, Zouari N, Deffay R. Implantation of a bio-artificialinsulin distributor in dogs, using islets of Langerhans from different animal species. C R Seances Soc Biol Fil. 1978;172:44–150.Google Scholar
  93. 93.
    Chick WL, Perna JJ, Lauris V, Low D, Galletti PM, Panol G, Whittemore AD, Like AA, Colton K, Lysaght MJ. Artificial pancreas using living β-cells: effects on glucose homeostasis in diabetic rats. Science. 1977;197:780–2.PubMedCrossRefGoogle Scholar
  94. 94.
    Sun AM, Parisius W, Healy GM, Vacek I, Macmorine HG. The use, in diabetic rats and monkeys, of artificial capillary units containing cultured islets of Langerhans (artificial endocrine pancreas). Diabetes. 1977;26:1136–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Ikeda H, Kobayashi N, Tanaka Y, Nakaji S, Yong C, Okitsu T, Oshita M, Matsumoto S, Noguchi H, Narushima M, Tanaka K, Miki A, Rivas-Carrillo JD, Soto-Gutierrez A, Navarro-Alvarez N, Tanaka K, Jun HS, Tanaka N, Yoon JW. A newly developed bioartificial pancreas successfully controls blood glucose in totally pancreatectomized diabetic pigs. Tissue Eng. 2006;12:1799–809.PubMedCrossRefGoogle Scholar
  96. 96.
    Ohgawara H, Miyazaki J, Karibe S, Katagiri N, Tashiro F, Akaike T. Assessment of pore size of a semipermeable membrane for immunoisolation or xenoimplantation of pancreatic B cells using a diffusion chamber. Transplant Proc. 1995;27:3319–20.PubMedGoogle Scholar
  97. 97.
    Kessler L, Jesser C, Belcourt A, Pinget M. Influence of acinar tissuecontamination on encapsulated pancreatic islets: morphological and functional studies. Transplant. 1997;63:1537–40.CrossRefGoogle Scholar
  98. 98.
    Tze WJ, Tai J, Cheung SS, Bissada N, Starzl TE. Prolongation of pig islet xenograft survival in rats by local immunosuprression with FK 506. Transplant Proc. 1994;26:777–8.PubMedGoogle Scholar
  99. 99.
    Rivereau AS, Darquy S, Chaillous L, Maugendre S, Gouin E, Reach G, Sai P. Reversal of diabetes in non-obese diabetic mice by xenografts of porcine islets entrapped in hollow fibres composed of polyacrylonitrile-sodium methallysulphonate copolymer. Diabetes Metab. 1997;23:205–12.PubMedGoogle Scholar
  100. 100.
    Icard P, Penfornis F, Gotheil C, Boillot J, Cornec C, Barrat F, Altman JJ. Tissue reaction to implanted bioartificial pancreas in pigs. Transplant Proc. 1990;22:724–6.PubMedGoogle Scholar
  101. 101.
    Trivedi N, Keegan M, Steil GM, Hollister-Lock J, Hasenkamp WM, Colton CK, Bonner-Weir S, Weir GC. Islets in alginate macrobeads reverse diabetes despite minimal acute insulin secretory responses. Transplant. 2001;71:203–11.CrossRefGoogle Scholar
  102. 102.
    Wang W, Gu Y, Hori H, Sakurai T, Hiura A, Sumi S, Tabata Y, Inoue K. Subcutaneous transplantation of macroencapsulated porcine pancreatic endocrine cells normalizes hyperglycaemia in diabetic mice. Transplant. 2003;76:290–6.CrossRefGoogle Scholar
  103. 103.
    Macdonald RA. Presentation on behalf of Living Cell Technologies at Bio Investor Forum, October 2010. http://www.lctglobal.com/Media-And-News/2010/Press-Releases/.
  104. 104.
    Elliott RB, Escobar L, Tan PL, Muzina M, Zwain S, Buchanan C. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplant. 2007;14:157–61.CrossRefGoogle Scholar
  105. 105.
    Uchiyama T, Watanabe J, Ishihara K. Pressure-induced change in permeation of insulin through a polymer alloy membrane for an implantable insulin pump. J Membr Sci. 2002;210:423–31.CrossRefGoogle Scholar
  106. 106.
    Schetky LM, Jardine P, Moussy F. A closed loop implantable artificial pancreas using thin film nitinol MEMS pumps. In: Pelton AR, Duerig T (eds) Proceedings of SMST 2003. Menlo Park, CA: SMST Society, Inc.; 2003.Google Scholar
  107. 107.
    Acosta GM, Henderson JR, Haj NAA, Ruchti TL, Monfre SL, Blank TB, Hazen KH. Compact apparatus for noninvasive measurement of glucose through near-infrared spectroscopy. US Patent No. 7,133,710 B2; 2006.Google Scholar
  108. 108.
    Ichimori S, Nishida K, Shimoda S, Sekigami T, Matsuo Y, Ichinose K, Shichiri M, Sakakida M, Araki E. Development of a highly responsive needle-type glucose sensor using polyimide for a wereable artificial endocrine pancreas. J Artif Organs. 2006;9:105–13.PubMedCrossRefGoogle Scholar
  109. 109.
    Yoshimi Y, Narimatsu A, Nakayama K, Sekine S, Hattori K, Sakai K. Development of an enzyme-free glucose sensor using the gate effect of a molecularly imprinted polymer. J Artif Organs. 2009;12:264–70.PubMedCrossRefGoogle Scholar
  110. 110.
    El-Khatib FH, Jiang J, Damiano ER. Adaptive closed-loop control provides blood-glucose regulation using dual subcutaneous insulin and glucagon infusion in diabetic swine. J Diabetes Sci Technol. 2007;1:181–92.PubMedGoogle Scholar
  111. 111.
    Grant P. A new approach to diabetic control: fuzzy logic and insulin pump technology. Med Eng Phys. 2007;29:824–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Wang Y, Dassau E, Doyle FJ III. Closed-loop control of artificial pancreatic β-cell in type 1 diabetes mellitus using model predictive iterative learning control. IEEE Trans Biomed Eng. 2010;57:211–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Ricotti L, Assaf T, Stefanini C, Menciassi A. System for controlled administration of a substance from a human-body-implanted infusion device. PCT Patent No. WO2012/011132A1; 2012.Google Scholar
  114. 114.
    Chen C, Lin C, Hsu C. Wireless charging module and electronic apparatus. US Patent No. 20090289595; 2009.Google Scholar
  115. 115.
    Vandevoorde G, Puers R. Wireless energy transfer for stand-alone systems: a comparison between low and high power applicability. Sens Actuat A Phys. 2001;92:305–11.CrossRefGoogle Scholar

Copyright information

© The Japanese Society for Artificial Organs 2012

Authors and Affiliations

  1. 1.The Biorobotics InstituteScuola Superiore Sant’AnnaPontedera (Pisa)Italy
  2. 2.Center for Micro-BioRobotics@SSSAItalian Institute of TechnologyPontedera (Pisa)Italy
  3. 3.Bristol Robotics LaboratoryUniversity of BristolBristolUK

Personalised recommendations