Skip to main content

Advertisement

Log in

Influence of local inflammation of the peritoneal membrane on diuresis and residual renal function in patients treated with peritoneal dialysis

  • Original Article
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the connection between local inflammation of the peritoneal membrane and diuresis, as well as the residual renal function (RRF) in patients treated with continuous ambulatory peritoneal dialysis (CAPD). Twenty patients treated with CAPD participated in this cross-sectional study. To determine the influence of local inflammation of the peritoneal membrane, effluent interleukin-6 (IL-6) and soluble interleukin-6 receptor (sIL-6R) levels were measured. The level of IL-6, in the group as a whole, was significantly higher in effluent (7.87 pg/mL) than in serum (1.29 pg/mL). There was a significant correlation between effluent and serum IL-6 (r = 0.608; P = 0.002). There was also a significant relationship between effluent and serum IL-6 and duration of CAPD treatment, respectively (r = 0.577; P = 0.004; r = 0.528; P = 0.008). Further, there was a significant negative correlation between effluent IL-6 and daily diuresis (r = −0.533; P = 0.008), but there was no significant correlation between effluent IL-6 and RRF (r = −0.339, P = 0.072). On the other hand, the concentrations of effluent IL-6 were significantly higher in patients with RRF <2 mL/min than in those with RRF ≥2 mL/min (P = 0.039). In conclusion, local inflammation has a significant impact on the amount of diuresis and probably on RRF in patients on CAPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fusshoeller A. Histomorphological and functional changes of the peritoneal membrane during long-term peritoneal dialysis. Pediatr Nephrol. 2008;23:19–25.

    Article  PubMed  Google Scholar 

  2. Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, Mackenzie RK, Williams GT, Peritoneal Biopsy Study Group. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol. 2002;13:470–9.

    PubMed  Google Scholar 

  3. Davies SJ, Phillips L, Griffiths AM, Russell LH, Naish PF, Russell GI. What really happens to people on long-term peritoneal dialysis? Kidney Int. 1998;54:2207–17.

    Article  PubMed  CAS  Google Scholar 

  4. Park MS, Lee HA, Chu WS, Yang DH, Hwang SD. Peritoneal accumulation of AGE and peritoneal membrane permeability. Perit Dial Int. 2000;20:452–60.

    PubMed  CAS  Google Scholar 

  5. Steinvinkel P, Barany P, Heimburger O, Pecoits-Filho R, Lindholm B. Mortality, malnutrition and atherosclerosis in end-stage renal disease: what is the role of IL-6? Kidney Int. 2002;61:S103–8.

    Article  Google Scholar 

  6. Taga T, Kishimoto T. Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol. 1997;15:797–819.

    Article  PubMed  CAS  Google Scholar 

  7. Rose-John S. Coordination of interleukin-6 biology by membrane bound and soluble receptors. Adv Exp Med Biol. 2001;495:145–51.

    Article  PubMed  CAS  Google Scholar 

  8. Jones SA, Horiuchi S, Topley N, Yamamoto N, Fuller G. The soluble interleukin 6 receptor: mechanisms of production and implications in disease. FAESB J. 2001;15:43–58.

    Article  CAS  Google Scholar 

  9. Honda H, Qureshi AR, Heimbürger O, Barany P, Wang K, Pecoits-Filho R. Serum albumin, C-reactive protein, interleukin-6, and fetuin a as predictors of malnutrition, cardiovascular disease, and mortality in patients with ESRD. Am J Kidney Dis. 2006;47:139–48.

    Article  PubMed  CAS  Google Scholar 

  10. Tripepi G, Mallamaci F, Zoccali C. Inflammation markers, adhesion molecules, and all-cause and cardiovascular mortality in patients with ESRD: searching for the best risk marker by multivariate modeling. J Am Soc Nephrol. 2005;16(Suppl 1):83–8.

    Article  Google Scholar 

  11. Pecoits-Filho R, Barany P, Lindholm B, Heimburger O, Stenvinkel P. Interleukin-6 is an independent predictor of mortality in patients starting dialysis treatment. Nephrol Dial Transpl. 2002;17:1684–8.

    Article  CAS  Google Scholar 

  12. Bargman JM, Thorpe KE, Churchill DN, CANUSA Peritoneal Dialysis Study Group. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J Am Soc Nephrol. 2001;12:2158–62.

    PubMed  CAS  Google Scholar 

  13. Termorshuizen F, Korevaar JC, Dekker FW, van Manen JG, Boeschoten EW, Krediet RT, NECOSAD Study Group. The relative importance of residual renal function compared with peritoneal clearance for patient survival and quality of life: an analysis of the Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD)-2. Am J Kidney Dis. 2003;41:1293–302.

    Article  PubMed  Google Scholar 

  14. Paniagua R, Amato D, Vonesh E, Correa-Rotter R, Ramos A, Moran J, Mujais S, Mexican Nephrology Collaborative Study Group. Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective, randomized, controlled trial. J Am Soc Nephrol. 2002;13:1307–20.

    PubMed  CAS  Google Scholar 

  15. Termorshuizen F, Dekker FW, van Manen JG, Korevaar JC, Boeschoten EW, Krediet RT, NECOSAD Study Group. Relative contribution of residual renal function and different measures of adequacy to survival in hemodialysis patients: an analysis of the Netherlands cooperative study on the adequacy of dialysis (NECOSAD)-2. J Am Soc Nephrol. 2004;15:1061–70.

    Google Scholar 

  16. Tam P. Peritoneal dialysis and preservation of residual renal function. Perit Dial Int. 2009;29:S108–10.

    PubMed  Google Scholar 

  17. Wang AY, Lam CW, Wang M, Woo J, Chan IH, Lui SF, Sanderson JE, Li PK. Circulating soluble vascular cell adhesion molecule 1: relationships with residual renal function, cardiac hypertrophy, and outcome of peritoneal dialysis patients. Am J Kidney Dis. 2005;45:715–29.

    Article  PubMed  CAS  Google Scholar 

  18. European Best Practice Guidelines Expert Group on Hemodialysis, European Renal Association. Section I. Measurement of renal function, when to refer and when to start dialysis. Nephrol Dial Transpl. 2002;17(Suppl 7):7–15.

    Google Scholar 

  19. Pecoits-Filho R, Carvalho MJ, Steinvinkel P, Lindholm B, Heimburger O. Systemic and intraperitoneal interleukin-6 system during the first year of peritoneal dialysis. Perit Dial Int. 2006;26:53–63.

    PubMed  CAS  Google Scholar 

  20. Malik AR, Little MA, Henriksson M, Tam FW, Brown EA. Peritonitis, peritoneal inflammation and membrane permeability: a longitudinal study of dialysate and serum MCP-1 in stable patients on peritoneal dialysis. J Nephrol. 2007;20:340–9.

    PubMed  CAS  Google Scholar 

  21. Zemel D, Berge RJM, Koomen GCM, Struijk DG, Krediet RT. Serum interleukin 6 in continuous ambulatory peritoneal dialysis in patients. Nephron. 1993;64:320–1.

    Article  PubMed  CAS  Google Scholar 

  22. Hurst SM, Wilkinson TS, McLoughlin RM, Jones S, Horiuchi S, Yamamoto N, et al. IL-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity. 2001;14:705–14.

    Article  PubMed  CAS  Google Scholar 

  23. Leehey DJ, Szeto CC, Li PKT. Peritonitis and exit site infection. In: Daugirdas JT, Blake PG, Ing TS, editors. Handbook of dialysis. 4th ed. Philadelphia: Lippincott, Williams and Wilkins; 2007. p. 417–39.

  24. Tranaeus A, Heimburger O, Lindholm B. Peritonitis in continuous ambulatory peritoneal dialysis (CAPD): diagnostic findings, therapeutic outcome and complications. Perit Dial Int. 1989;9:179–90.

    PubMed  CAS  Google Scholar 

  25. Rodrigues A, Martins M, Korevaar JC, Silva S, Oliveira JC, Cabrita A, et al. Evaluation of peritoneal transport and membrane status in peritoneal dialysis: focus on incident fast transporters. Am J Nephrol. 2007;27:84–91.

    Article  PubMed  CAS  Google Scholar 

  26. McCourt M, Wang JH, Sookhai S, Redmond HP. Proinflammatory mediators stimulate neutrophil-directed angiogenesis. Arch Surg. 1999;134:1325–1331, discussion 1331–1332.

    Google Scholar 

  27. Han SH, Lee SC, Ahn SV, Lee JE, Kim DK, Lee TH, et al. Reduced residual renal function is a risk of peritonitis in continuous ambulatory peritoneal dialysis patients. Nephrol Dial Transplant. 2007;22:2653–8.

    Article  PubMed  Google Scholar 

  28. Wang AY, Wang M, Woo J, Law MC, Chow KM, Li PK, Lui SF, Sanderson JE. Novel association between residual renal function and left ventricular hypertrophy in peritoneal dialysis patients. Kidney Int. 2002;62:639–47.

    Google Scholar 

  29. Chung SH, Heimburger O, Lindholm B. Poor outcomes for fast transporters on PD: the rise and fall of a clinical concern. Semin Dial. 2008;21:7–10.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ivo Jelicic or Dragan Ljutic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jelicic, I., Ljutic, D., Sain, M. et al. Influence of local inflammation of the peritoneal membrane on diuresis and residual renal function in patients treated with peritoneal dialysis. J Artif Organs 15, 65–70 (2012). https://doi.org/10.1007/s10047-011-0603-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-011-0603-7

Keywords

Navigation