Journal of Artificial Organs

, Volume 14, Issue 4, pp 301–309 | Cite as

Targeting N-acetylglucosamine-bearing polymer-coated liposomes to vascular smooth muscle cells

  • Mamiko Ise
  • Hirohiko IseEmail author
  • Yuji Shiba
  • Satoshi Kobayashi
  • Mitsuaki Goto
  • Masafumi Takahashi
  • Toshihiro Akaike
  • Uichi Ikeda
Original Article


The targeted delivery of anti-inflammatory agents has great therapeutic potential for treating restenosis following percutaneous coronary intervention. To develop a drug delivery system targeted to injured blood vessels, we examined whether N-acetylglucosamine (GlcNAc)-bearing polymer-coated liposomes (GlcNAc-Ls) are specifically taken up by vascular smooth muscle cells (VSMCs). Flow cytometric analysis revealed that GlcNAc-Ls were taken up by VSMCs in vitro. Furthermore, GlcNAc-Ls were intravenously administered to mice that had undergone wire-mediated vascular injury. GlcNAc-Ls markedly accumulated at the intramural site of the injured vessel walls but not at the contralateral (uninjured) vessel walls. These results demonstrated that GlcNAc-Ls can be specifically taken up by VSMCs both in vitro and in vivo. We propose a novel strategy of using GlcNAc-Ls that has potential for application in drug delivery targeted to injured blood vessels.


Drug delivery system N-acetylglucosamine Lectin Restenosis Vascular smooth muscle cells 



This work was supported in part by a Grant-in-Aid for Scientific Research on Innovative Areas (No. 20200016) from the Ministry of Education, Science, Sports, Culture, and Technology of Japan. We are grateful to Dr. Nakagami from Osaka University for providing NF-κB decoy oligonucleotides.


  1. 1.
    Babapulle MN, Eisenberg MJ. Coated stents for the prevention of restenosis: part I. Circulation. 2002;106:2734–40.PubMedCrossRefGoogle Scholar
  2. 2.
    Carter AJ, Aggarwal M, Kopia GA, Tio F, Tsao PS, Kolata R, Yeung AC, Llanos G, Dooley J, Falotico R. Long-term effects of polymer-based, slow-release, sirolimus-eluting stents in a porcine coronary model. Cardiovasc Res. 2004;63:617–24.PubMedCrossRefGoogle Scholar
  3. 3.
    Virmani R, Guagliumi G, Farb A, Musumeci G, Grieco N, Motta T, Mihalcsik L, Tespili M, Valsecchi O, Kolodgie FD. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation. 2004;109:701–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Yamazaki N, Kojima S, Bovin NV, Andre S, Gabius S, Gabius HJ. Endogenous lectins as targets for drug delivery. Adv Drug Deliv Rev. 2000;43:225–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Nishikawa M. Development of cell-specific targeting system for drugs and genes. Biol Pharm Bull. 2005;28:195–200.PubMedCrossRefGoogle Scholar
  6. 6.
    Weis WI, Drickamer K. Structural basis of lectin–carbohydrate recognition. Annu Rev Biochem. 1996;65:441–73.PubMedCrossRefGoogle Scholar
  7. 7.
    Cook SE, Park IK, Kim EM, Jeong HJ, Park TG, Choi YJ, Akaike T, Cho CS. Galactosylated polyethylenimine-graft-poly(vinylpyrrolidone) as a hepatocyte-targeting gene carrier. J Control Release. 2005;105:151–63.PubMedCrossRefGoogle Scholar
  8. 8.
    Ise H, Kobayashi S, Goto M, Sato T, Kawakubo M, Takahashi M, Ikeda U, Akaike T. Vimentin and desmin possess GlcNAc-binding lectin-like properties on cell surfaces. Glycobiology. 2010;20:843–64.PubMedCrossRefGoogle Scholar
  9. 9.
    Aso S, Ise H, Takahashi M, Kobayashi S, Morimoto H, Izawa A, Goto M, Ikeda U. Effective uptake of N-acetylglucosamine-conjugated liposomes by cardiomyocytes in vitro. J Control Release. 2007;122:189–98.PubMedCrossRefGoogle Scholar
  10. 10.
    Kobayashi S, Ise H, Takahashi M, Goto M, Akaike T, Ikeda U. Surface coating of bone marrow cells with N-acetylglucosamine for bone marrow implantation therapy. Biomaterials. 2009;30:574–82.PubMedCrossRefGoogle Scholar
  11. 11.
    Kim SJ, Ise H, Goto M, Komura K, Cho CS, Akaike T. Gene delivery system based on highly specific recognition of surface-vimentin with N-acetylglucosamine immobilized polyethylenimine. Biomaterials. 2011;32:3471–80.PubMedCrossRefGoogle Scholar
  12. 12.
    Brand K, Page S, Rogler G, Bartsch A, Brandl R, Knuechel R, Page M, Kaltschmidt C, Baeuerle PA, Neumeier D. Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion. J Clin Invest. 1996;97:1715–22.PubMedCrossRefGoogle Scholar
  13. 13.
    Yamasaki K, Asai T, Shimizu M, Aoki M, Hashiya N, Sakonjo H, Makino H, Kaneda Y, Ogihara T, Morishita R. Inhibition of NF-kappaB activation using cis-element ‘decoy’ of NF-kappaB binding site reduces neointimal formation in porcine balloon-injured coronary artery model. Gene Ther. 2003;10:356–64.PubMedCrossRefGoogle Scholar
  14. 14.
    Ikeda U, Shimpo M, Ikeda M, Minota S, Shimada K. Lipophilic statins augment inducible nitric oxide synthase expression in cytokine-stimulated cardiac myocytes. J Cardiovasc Pharmacol. 2001;38:69–77.PubMedCrossRefGoogle Scholar
  15. 15.
    Ogata Y, Takahashi M, Takeuchi K, Ueno S, Mano H, Ookawara S, Kobayashi E, Ikeda U, Shimada K. Fluvastatin induces apoptosis in rat neonatal cardiac myocytes: a possible mechanism of statin-attenuated cardiac hypertrophy. J Cardiovasc Pharmacol. 2002;40:907–15.PubMedCrossRefGoogle Scholar
  16. 16.
    Sata M, Maejima Y, Adachi F, Fukino K, Saiura A, Sugiura S, Aoyagi T, Imai Y, Kurihara H, Kimura K, Omata M, Makuuchi M, Hirata Y, Nagai R. A mouse model of vascular injury that induces rapid onset of medial cell apoptosis followed by reproducible neointimal hyperplasia. J Mol Cell Cardiol. 2000;32:2097–104.PubMedCrossRefGoogle Scholar
  17. 17.
    Yoshioka T, Takahashi M, Shiba Y, Suzuki C, Morimoto H, Izawa A, Ise H, Ikeda U. Granulocyte colony-stimulating factor (G-CSF) accelerates reendothelialization and reduces neointimal formation after vascular injury in mice. Cardiovasc Res. 2006;70:61–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Shiba Y, Takahashi M, Hata T, Murayama H, Morimoto H, Ise H, Nagasawa T, Ikeda U. Bone marrow CXCR4 induction by cultivation enhances therapeutic angiogenesis. Cardiovasc Res. 2009;81:169–77.PubMedCrossRefGoogle Scholar
  19. 19.
    Morimoto H, Takahashi M, Shiba Y, Izawa A, Ise H, Hongo M, Hatake K, Motoyoshi K, Ikeda U. Bone marrow-derived CXCR4+ cells mobilized by macrophage colony-stimulating factor participate in the reduction of infarct area and improvement of cardiac remodeling after myocardial infarction in mice. Am J Pathol. 2007;171:755–66.PubMedCrossRefGoogle Scholar
  20. 20.
    Ogawa T, Kawada N, Ikeda K. Effect of natural interferon alpha on proliferation and apoptosis of hepatic stellate cells. Hepatol Int. 2009;3:497–503.CrossRefGoogle Scholar
  21. 21.
    Ivaska J, Pallari HM, Nevo J, Eriksson JE. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res. 2007;313:2050–62.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Artificial Organs 2011

Authors and Affiliations

  • Mamiko Ise
    • 1
  • Hirohiko Ise
    • 4
    Email author
  • Yuji Shiba
    • 1
  • Satoshi Kobayashi
    • 1
  • Mitsuaki Goto
    • 2
  • Masafumi Takahashi
    • 3
  • Toshihiro Akaike
    • 4
  • Uichi Ikeda
    • 1
  1. 1.Division of Cardiovascular Sciences, Department of Organ RegenerationShinshu University Graduate School of MedicineMatsumotoJapan
  2. 2.Celagix Res Ltd.YokohamaJapan
  3. 3.Division of Bioimaging Sciences, Center for Molecular MedicineJichi Medical UniversityTochigiJapan
  4. 4.Frontier Research CenterTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations