Skip to main content

Advertisement

Log in

Impact of synovial membrane-derived stem cell transplantation in a rat model of myocardial infarction

  • Original Article
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

To explore a new source of cell therapy for myocardial infarction (MI), we assessed the usefulness of mesenchymal stem cells derived from synovial membrane samples (SM MSCs). We developed a model of MI by ligation of the proximal left anterior descending coronary artery (LAD) in Lewis rats. Two weeks after ligation, 5 × 106 SM MSCs were injected into the MI scar area (T group, n = 9), while buffer was injected into the control group (C group, n = 9). Cardiac performances measured by echocardiography at 4 weeks after transplantation were significantly increased in the T group as compared with the C group. Masson’s trichrome staining showed that SM MSC transplantation decreased collagen volume in the myocardium. Engrafted SM MSCs were found in the border zone of the infarct area. Immunohistological analysis showed that these cells were positive for the sarcomeric markers alpha-actinin and titin, and negative for desmin, troponin T, and connexin 43. SM MSC transplantation improved cardiac performance in a rat model of MI in the subacute phase, possibly through transdifferentiation of the engrafted cells into a myogenic lineage, which led to inhibition of myocardial fibrosis. Our results suggest that SM MSCs are a potential new regeneration therapy candidate for heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Psaltis PJ, Zannettino AC, Worthley SG, Gronthos S. Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells 2008;26:2201–2210

    Article  PubMed  Google Scholar 

  2. Kinnaird T, Stabile E, Burnett MS, Epstein SE. Bone-marrowderived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ Res 2004;95:354–363

    Article  PubMed  CAS  Google Scholar 

  3. Wollert KC, Drexler H. Cell-based therapy for heart failure. Curr Opin Cardiol 2006;21:234–239

    Article  PubMed  Google Scholar 

  4. Tambara K, Sakakibara Y, Sakaguchi G, Lu F, Premaratne GU, Lin X, Nishimura K, Komeda M. Transplanted skeletal myoblasts can fully replace the infarcted myocardium when they survive in the host in large numbers. Circulation 2003;108:II259–263

    Article  PubMed  Google Scholar 

  5. Kondoh H, Sawa Y, Miyagawa S, Sakakida-Kitagawa S, Memon IA, Kawaguchi N, Matsuura N, Shimizu T, Okano T, Matsuda H. Longer preservation of cardiac performance by sheet-shaped myoblast implantation in dilated cardiomyopathic hamsters. Cardiovasc Res 2006;69:466–475

    Article  PubMed  CAS  Google Scholar 

  6. Menasche P, Hagege AA, Vilquin JT, Desnos M, Abergel E, Pouzet B, Bel A, Sarateanu S, Scorsin M, Schwartz K, Bruneval P, Benbunan M, Marolleau JP, Duboc D. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 2003;41:1078–1083

    Article  PubMed  Google Scholar 

  7. Iba O, Matsubara H, Nozawa Y, Fujiyama S, Amano K, Mori Y, Kojima H, Iwasaka T. Angiogenesis by implantation of peripheral blood mononuclear cells and platelets into ischemic limbs. Circulation 2002;106:2019–2025

    Article  PubMed  CAS  Google Scholar 

  8. Uemura R, Xu M, Ahmad N, Ashraf M. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res 2006;98:1414–1421

    Article  PubMed  CAS  Google Scholar 

  9. Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature 2002;416:545–548

    Article  PubMed  CAS  Google Scholar 

  10. De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 2001;44:1928–1942

    Article  PubMed  Google Scholar 

  11. De Bari C, Dell’Accio F, Vandenabeele F, Vermeesch JR, Raymackers JM, Luyten FP. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol 2003;160:909–918

    Article  PubMed  Google Scholar 

  12. Miyagawa S, Sawa Y, Taketani S, Kawaguchi N, Nakamura T, Matsuura N, Matsuda H. Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the effect of cellular cardiomyoplasty. Circulation 2002;105:2556–2561

    Article  PubMed  CAS  Google Scholar 

  13. Fukui S, Kitagawa-Sakakida S, Kawamata S, Matsumiya G, Kawaguchi N, Matsuura N, Sawa Y. Therapeutic effect of midkine on cardiac remodeling in infarcted rat hearts. Ann Thorac Surg 2008;85:562–570

    Article  PubMed  Google Scholar 

  14. Cao B, Zheng B, Jankowski RJ, Kimura S, Ikezawa M, Deasy B, Cummins J, Epperly M, Qu-Petersen Z, Huard J. Muscle stem cells differentiate into haematopoietic lineages but retain myogenic potential. Nat Cell Biol 2003;5:640–646

    Article  PubMed  CAS  Google Scholar 

  15. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13:4279–4295

    Article  PubMed  CAS  Google Scholar 

  16. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997;276:71–74

    Article  PubMed  CAS  Google Scholar 

  17. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 2005;52:2521–2529

    Article  PubMed  Google Scholar 

  18. Pei M, He F, Vunjak-Novakovic G. Synovium-derived stem cellbased chondrogenesis. Differentiation 2008;76:1044–1056

    Article  PubMed  CAS  Google Scholar 

  19. Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature 2008;451:937–942

    Article  PubMed  CAS  Google Scholar 

  20. Nygren JM, Jovinge S, Breitbach M, Sawen P, Roll W, Hescheler J, Taneera J, Fleischmann BK, Jacobsen SE. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 2004;10:494–501

    Article  PubMed  CAS  Google Scholar 

  21. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 2004;95:9–20

    Article  PubMed  CAS  Google Scholar 

  22. Dawn B, Stein AB, Urbanek K, Rota M, Whang B, Rastaldo R, Torella D, Tang XL, Rezazadeh A, Kajstura J, Leri A, Hunt G, Varma J, Prabhu SD, Anversa P, Bolli R. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci USA 2005;102:3766–3771

    Article  PubMed  CAS  Google Scholar 

  23. Srivastava D, Ivey KN. Potential of stem-cell-based therapies for heart disease. Nature 2006;441:1097–1099

    Article  PubMed  CAS  Google Scholar 

  24. Reinecke H, Minami E, Zhu WZ, Laflamme MA. Cardiogenic differentiation and transdifferentiation of progenitor cells. Circ Res 2008;103:1058–1071

    Article  PubMed  CAS  Google Scholar 

  25. Karouzakis E, Neidhart M, Gay RE, Gay S. Molecular and cellular basis of rheumatoid joint destruction. Immunol Lett 2006;106:8–13

    Article  PubMed  CAS  Google Scholar 

  26. Huber LC, Distler O, Tarner I, Gay RE, Gay S, Pap T. Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology 2006;45:669–675

    Article  PubMed  CAS  Google Scholar 

  27. Kutschka I, Chen IY, Kofidis T, Arai T, von Degenfeld G, Sheikh AY, Hendry SL, Pearl J, Hoyt G, Sista R, Yang PC, Blau HM, Gambhir SS, Robbins RC. Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts. Circulation 2006;114:I167–173

    PubMed  Google Scholar 

  28. Miyagawa S, Sawa Y, Sakakida S, Taketani S, Kondoh H, Memon IA, Imanishi Y, Shimizu T, Okano T, Matsuda H. Tissue cardiomyoplasty using bioengineered contractile cardiomyocyte sheets to repair damaged myocardium: their integration with recipient myocardium. Transplantation 2005;80:1586–1595

    Article  PubMed  CAS  Google Scholar 

  29. Memon IA, Sawa Y, Fukushima N, Matsumiya G, Miyagawa S, Taketani S, Sakakida SK, Kondoh H, Aleshin AN, Shimizu T, Okano T, Matsuda H. Repair of impaired myocardium by means of implantation of engineered autologous myoblast sheets. J Thorac Cardiovasc Surg 2005;130:1333–1341

    Article  PubMed  Google Scholar 

  30. Hata H, Matsumiya G, Miyagawa S, Kondoh H, Kawaguchi N, Matsuura N, Shimizu T, Okano T, Matsuda H, Sawa Y. Grafted skeletal myoblast sheets attenuate myocardial remodeling in pacing-induced canine heart failure model. J Thorac Cardiovasc Surg 2006;132:918–924

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Sawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imanishi, Y., Miyagawa, S., Kitagawa-Sakakida, S. et al. Impact of synovial membrane-derived stem cell transplantation in a rat model of myocardial infarction. J Artif Organs 12, 187–193 (2009). https://doi.org/10.1007/s10047-009-0465-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-009-0465-4

Key words

Navigation