Skip to main content

Advertisement

Log in

Recent progress in mechanical artificial pancreas

  • Review
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Strict blood glucose (BG) control is proved to improve the outcome in patients with glucose intolerance both in acute and chronic phases, irrespective of whether the patient has diabetes mellitus. However, strict BG control by conventional methods is so complicated that it cannot be performed easily in normal clinical situations. Furthermore, it is sometimes inadequate. Therefore, a clinically applicable, reliable artificial pancreas (AP) has long been sought after for more than 40 years. Considering the present important situations concerning AP, a survey of recent progress in AP is highly desirable. In this review, recent progress in mechanical AP (MAP) and in MAP-related items is presented. MAP is composed of three major components: a BG control algorithm, a drug administration system, and a glucose sensor. Recent progress in development of these components is presented, followed by descriptions of representative MAPs. Although significant progress in the development of MAP has been made, its use in clinical situations is limited or for research purposes at present. The main limiting factor is the slow progress in the development of glucose sensors. However, more widespread clinical application of the MAP will occur in the near future, considering the number of reliable long-life intravenous glucose sensors under development. Another factor is the worldwide recognition of the importance of BG control in acutely ill patients, in whom the period of strict BG control is usually for several days to a few weeks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diabetic Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Eng J Med 1993;329:977–986

    Article  Google Scholar 

  2. United Kingdom Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylurea or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes(UKPDS33). Lancet 1998;352:837–853

    Article  Google Scholar 

  3. Hirsch IB, Brownlee M.Should minimal blood glucose variability become the gold standard of glycemic control? J Diabetes Complications 2005;19:178–181

    Article  PubMed  Google Scholar 

  4. Malmberg K. Prospective randomized study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus: DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction) study group. BMJ 1997;314:1512–1515

    PubMed  CAS  Google Scholar 

  5. Furnary AP, Zerr KJ, Grunkemeier GL, Starr A. Continuous intravenous insulin infusion reduces the incidence of deep sternal wound infection in diabetic patients after cardiac surgical procedures. Ann Thorac Surg 1999;67:352–362

    Article  PubMed  CAS  Google Scholar 

  6. Van den Berghe G, Wouters P, Weekers F, Werwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Buillon R. Intensive insulin therapy in the critically ill patients. N Eng J Med 2001;345:1359–1367

    Article  Google Scholar 

  7. Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, Van Wijngaerden E, Bobbaers H, Buillon R. Intensive insulin therapy in the medical ICU. N Eng J Med 2006;354:449–461

    Article  Google Scholar 

  8. Finney SJ, Zekveld C, Elia A, Evans TW. Glucose control and mortality in critically ill patients. JAMA 2003;290:2041–2047

    Article  PubMed  CAS  Google Scholar 

  9. Krinsley JS. Effect of an intensive glucose management protocol on the mortality of critically ill adult patients. Mayo Clin Proc 2004;79:992–1000

    Article  PubMed  Google Scholar 

  10. International Surviving Sepsis Campaign Guidelines Committee. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 2008;36:296–327

    Article  Google Scholar 

  11. Taylor JH, Beilman GJ. Hyperglycemia in the intensive care unit: no longer just a marker of illness severity. Surg Infect 2005;6:233–245

    Article  Google Scholar 

  12. Krinsley JS, Jones RL. Cost analysis of intensive glycemic control in critically ill adult patients. Chest 2006;129:644–650

    Article  PubMed  Google Scholar 

  13. Van den Berhge G, Wouters PJ, Kesteloot K, Hilleman DE. Analysis of healthcare resource utilization with intensive insulin therapy in critically ill patients. Crit Care Med 2006;34:612–616

    Google Scholar 

  14. Baird TA, Parsons MW, Phanh T, Butcher KS, Desmond PM, Tress BM, Colman PG, Chambers BR, Davis SM. Persistent poststroke hyperglycemia is independently associated with infarct expansion and worse clinical outcome. Stroke 2003;34:2208–2214

    Article  PubMed  CAS  Google Scholar 

  15. Vogelzang M, van der Horst ICC, Nijsten MWN. Hyperglycaemic index as a tool to assess glucose control: a retrospective study. Crit Care 2004;8:R122–R127

    Article  PubMed  Google Scholar 

  16. Srinivasan V, Spinella PC, Drott HR, Roth CL, Helfaer MA, Nadkarni V. Association of timing, duration and intensity of hyperglycemia with intensive care unit mortality in critically ill children. Pediatr Crit Care Med 2004;5:329–336

    Article  PubMed  Google Scholar 

  17. Wintergerst KA, Buckingham B, Gandrud L, Wong BJ, Kache S, Wilson DM. Association of hypoglycemia, hyperglycemia, and glucose variability with morbidity and death in the pediatric intensive care unit. Pediatrics 2006;118:173–179

    Article  PubMed  Google Scholar 

  18. Egi M, Bellomo R, Stachowski E, French CJ, Hart G. Variability of blood glucose concentration and short-term mortality in critically ill patients. Anesthesiology 2006;105:244–252

    Article  PubMed  CAS  Google Scholar 

  19. Laver S, Preston S, Turner D, McKinstry C, Padkin A. Implementing intensive insulin therapy: development and audit of the Bath insulin protocol. Anaesth Intensive Care 2004;32:311–316

    PubMed  CAS  Google Scholar 

  20. Kanji S, Singh A, Tierney M, Meggison H, McIntyre L, Hebert PC. Standardization of intravenous insulin therapy improves the efficiency and safety of blood glucose control in critically ill adults. Intensive Care Med 2004;30:804–810

    Article  PubMed  Google Scholar 

  21. German Competence Network Sepsis (SepNet). Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Eng J Med 2008;358:125–139

    Article  Google Scholar 

  22. Van den Berhge G, Wilmer A, Milants I, Wouters PJ, Bouckaert B, Bruyninckx F, Bouillon R, Schetz M. Intensive insulin therapy in mixed medical/surgical intensive care units. Benefit versus harm. Diabetes 2006;55:3151–3159

    Article  CAS  Google Scholar 

  23. Orford NR. Intensive insulin therapy in septic shock. Crit Care Resusc 2006;8:230–234

    PubMed  Google Scholar 

  24. McNay EC, Williamson A, McCrimmon RJ, Sherwin RS. Cognitive and neural hippocampal effects of long-term moderate recurrent hypoglycemia. Diabetes 2006;55:1088–1095

    Article  PubMed  CAS  Google Scholar 

  25. Vriesendorp TM, DeVries JH, van Santen S, Moeniralam HS, de Jonge E, Roos YBWEM, Schultz MJ, Rosendaal FR, Hoekstra JBL. Evaluation of short-term consequences of hypoglycemia in an intensive care unit. Crit Care Med 2006;34:2714–2718

    Article  PubMed  CAS  Google Scholar 

  26. Auer RN, Olsson Y, Siesjo BK. Hypoglycemic brain injury in the rat. Correlation of density of brain damage with the EEG isoelectric time: a quantitative study. Diabetes 1984;33:1090–1098

    Article  PubMed  CAS  Google Scholar 

  27. De Graaff MJ, Spronk PE, Schultz MJ. Strict glycemic control. Not if and when, but who and how? In: Vincent JL, editor. Yearbook of intensive care and emergency medicine. Berlin Heidelberg New York: Springer; 2008. p 502–513

    Chapter  Google Scholar 

  28. Cryer PE. Hypoglycemia: the limiting factor in the glycaemic management of the critically ill? Diabetologia 2006;49:1722–1725

    Article  PubMed  CAS  Google Scholar 

  29. Bhatia A, Cadman B, Mackenzie I. Hypoglycemia and cardiac arrest in a critically ill patient on strict glycemic control. Anesth Analg 2006;102:549–551

    Article  PubMed  Google Scholar 

  30. Simes D. Cardiac arrest: a late complication of glucose-insulinpotassium (GIK) therapy. Crit Care Resusc 2001;3:101–104

    PubMed  CAS  Google Scholar 

  31. Devos P, Preiser JC. Is it time for implementation of tight glycaemia control by intensive insulin therapy in every ICU? Crit Care 2006;10:130

    Article  PubMed  Google Scholar 

  32. Mackenzie I, Ingle S, Zaidi S, Buczaski S. Tight glycemic control: a survey of intensive care practice in large English hospitals. Intensive Care Med 2005;31:1136

    Article  PubMed  Google Scholar 

  33. Plank J, Blaha J, Cordingley J, Wilinska ME, Chassin LJ, Morgan C, Squire S, Haluzik M, Kremen J, Svacina S, Toller W, Plasnik A, Ellmerer M, Hovorka R, Pieber TR. Multicentric, randomized, controlled trial to evaluate blood glucose control by the model predictive control algorithm versus routine glucose management protocols in intensive care unit patients. Diabetes Care 2006;29:271–276

    Article  PubMed  Google Scholar 

  34. De Block C, Keenoy BMY, Van Gaal L, Rogiers P. Intensive insulin therapy in the intensive care unit. Diabetes Care 2006;29:1750–1756

    Article  PubMed  CAS  Google Scholar 

  35. Scalea TM, Bochicchio BV, Bochicchio KM, Johnson SB, Joshi M, Pyle A. Tight glycemic control in critically injured trauma patients. Ann Surg 2007;246:605–612

    Article  PubMed  Google Scholar 

  36. Vriesendorp TM, van Santen S, DeVries H, De Jonge E, Rosendaal FR, Schultz MJ, Hoekstra JBL. Predisposing factors for hypoglycemia in the intensive care unit. Crit Care Med 2006;34:96–101

    Article  PubMed  Google Scholar 

  37. Van den Berhge G. How to compare adequacy of algorithms to control blood glucose in the intensive care unit? Crit Care 2004;8:151–152

    Article  Google Scholar 

  38. Lonergan T, Le Compte A, Willacy M, Chase JG, Shaw GM, Wong XW, Lotz T, Lin J, Hann CE. A simple insulin-nutrition protocol for tight glycemic control in critical illness: development and protocol comparison. Diabetes Technol Ther 2006;8:191–206

    Article  PubMed  Google Scholar 

  39. Vanhorebeek I, Langouche L, van den Berhge. Intensive insulin therapy in the intensive care unit: update on clinical impact and mechanisms of action. Endocr Pract 2006;12:14–21

    PubMed  Google Scholar 

  40. Hoshino M, Haraguchi Y, Kirita M. Nutritional treatment of septic patients with decreased glucose tolerance with the artificial pancreas. Abstracts of the 7th World Congress of the International Society for Artificial Organs, No. G-02-36: 1989. p 308

  41. Haraguchi Y, Hoshino M, Kirita M. Intravenous hyperalimentation and artificial endocrine pancreas for patients with impaired glucose tolerance. Abstracts of the 25th Congress of the European Society for Surgical Research, No. 178: 1990. p 84

  42. Hoshino M, Haraguchi Y, Hirasawa H, Sakai M, Saegusa H, Hayashi K, Horita N, Ohsawa H. Close relationship of tissue plasminogen activator-plasminogen activator inhibitor-1 complex with multiple organ dysfunction syndrome investigated by means of the artificial pancreas. Crit Care 2001;5:88–99

    Article  PubMed  CAS  Google Scholar 

  43. Hoshino M, Haraguchi Y, Hirasawa H, Mizushima I, Tanaka C, Morita Y, Yokoi T, Sakai M. Measurement of insulin clearance and factors affecting insulin clearance in septic patients with glucose intolerance — analysis under strict blood glucose control by means of bedside-type artificial pancreas. Chiba Med J 2006;82:149–161

    CAS  Google Scholar 

  44. Hoshino M, Haraguchi Y, Mizushima I, Kajiwara S, Takagi M. Significance of the suppression of blood glucose variability in acutely ill severe patients with glucose intolerance evaluated by means of bedside-type artificial pancreas. Crit Care 2008;12:S60

    Article  Google Scholar 

  45. Steil GM, Panteleon AE, Rebrin K. Closed-loop insulin delivery — the path to physiological glucose control. Adv Drug Deliv Rev 2004;56:125–144

    Article  PubMed  CAS  Google Scholar 

  46. Bequtte BW. A critical assessment of algorithms and challenges in the development of a closed-loop artificial pancreas. Diabetes Technol Ther 2005;7:28–47

    Article  Google Scholar 

  47. Hanaire H. Continuous glucose monitoring and external insulin pump: towards a subcutaneous closed loop. Diabetes Metab 2006;32:534–538

    Article  PubMed  CAS  Google Scholar 

  48. Clarke WL, Kovatchev B. The artificial pancreas: how close are we to closing the loop. Pediatr Endocrinol Rev 2007;4:314–316

    PubMed  Google Scholar 

  49. Marchetti G, Barolo M, Jovanovic L, Zisser H, Seborg DE. An improved PID switching control strategy for type 1 diabetes. IEEE Trans Biomed Eng 2008;55:857–865

    Article  PubMed  Google Scholar 

  50. Shalitin S, Phillip M. Closing the loop: combining insulin pumps and glucose sensors in children with type 1 diabetes. Pediatr Diabetes 2006;7:45–49

    Article  PubMed  Google Scholar 

  51. Matsuo Y, Shimoda S, Sakakida K, Nishida K, Sekigami T, Ichimori S, Ichinose K, Shichiri M, Araki E. Strict glycemic control in diabetic dogs with closed-loop intraperitoneal insulin infusion algorithm designed for an artificial endocrine pancreas. J Artif Organs 2003;6:55–63

    Article  PubMed  CAS  Google Scholar 

  52. Weinzimer SA, Steil GM, Swan KL, Dziura J, Kurtz N, Tamborlane WV. Fully automated closed-loop insulin delivery vs. semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care 2008;31:934–939

    Article  PubMed  Google Scholar 

  53. Zisser H, Jovanovic L, Doyle F, Ospina P, Owens C. Run-to-run control of meal-related insulin dosing. Diabetes Technol Ther 2005;7:48–57

    Article  PubMed  CAS  Google Scholar 

  54. Owens DR, Zinman B, Bollit G. Alternative routes of insulin delivery. Diabet Med 2003;20:886–898

    Article  PubMed  CAS  Google Scholar 

  55. Renard E. Implantable closed-loop glucose-sensing and insulin delivery: the future for insulin pump therapy. Curr Opin Pharmacol 2002;2:708–716

    Article  PubMed  CAS  Google Scholar 

  56. Kordonouri O, Barnekow C, Hartmann R, Hoeffe J, Lauterborn R, Deiss D. Age-specific advantages of continuous subcutaneous insulin infusion as compared with multiple daily injections in pediatric patients. Diabetes Care 2006;29:133–134

    Article  PubMed  CAS  Google Scholar 

  57. Boullu-Sanchis S, Ortega F, Chabrier G, Busch MS, Uhl C, Pinget M, Jeandidier N. Efficacy of short term continuous subcutaneous insulin lispro versus continuous intravenous regular insulin in poorly controlled, hospitalized, type 2 diabetic patients. Diabetes Metab 2006;32:350–357

    Article  PubMed  CAS  Google Scholar 

  58. Logtenberg SJJ, Van Ballegooie E, Israel-Bultman H, Van Linde A, Bilo HJG. Glycaemic control, health status and treatment satisfaction with continuous intraperitoneal insulin infusion. Neth J Med 2007;65:65–70

    PubMed  CAS  Google Scholar 

  59. Renard E, Costalat G, Chevassus H, Bringer J. Artificial β-cell: clinical experience toward an implantable closed-loop insulin delivery system. Diabetes Metab 2006;32:497–502

    Article  PubMed  CAS  Google Scholar 

  60. Renard E, Schaepelynck-Belicar P. Implantable insulin pumps. A position statement about their clinical use. Diabetes Metab 2007;33:158–166

    Article  PubMed  CAS  Google Scholar 

  61. Zahn JD, Hsieh YC, Yang M. Components of an integrated microfl uidic device for continuous glucose monitoring with responsive insulin delivery. Diabetes Technol Ther 2005;7:536–545

    Article  PubMed  CAS  Google Scholar 

  62. Kabata A, Okamura K, Suzuki H, Kishigami Y, Kikuchi M, Haga M. Prototype micropump for insulin administration based on electrochemical bubble formation. J Pharm Sci 2008;97:5037–5045

    Article  PubMed  CAS  Google Scholar 

  63. Ekberg K, Brismar T, Johansson BL, Jonsson B, Lindstrom P, Wahren J. Amelioration of sensory nerve dysfunction by Cpeptide in patients with type 1 diabetes. Diabetes 2003;52:536–541

    Article  PubMed  CAS  Google Scholar 

  64. Kizilel S, Garfinkel M, Opara E. The bioartificial pancreas: progress and challenges. Diabetes Technol Ther 2005;7:968–985

    Article  PubMed  CAS  Google Scholar 

  65. Klonoff DC. Noninvasive blood glucose monitoring. Diabetes Care 1997;20:433–437

    Article  PubMed  CAS  Google Scholar 

  66. Pfeiffer EF, Meyerhoff C, Bischof F, Keck FS, Kerner W. On line continuous monitoring of subcutaneous tissue glucose is feasible by combining portable glucosensor with microdialysis. Horm Metab Res 1993;25:121–124

    Article  PubMed  CAS  Google Scholar 

  67. Pickup JC, Shaw GW, Claremont DJ. In vivo molecular sensing in diabetes mellitus: an implantable glucose sensor with direct electron transfer. Diabetologia 1989;32:213–217

    Article  PubMed  CAS  Google Scholar 

  68. Kondepati VR, Heise HM. Recent progress in analytical instrumentation for glycemic control in diabetic and critically ill patients. Anal Bioanal Chem 2007;388:545–563

    Article  PubMed  CAS  Google Scholar 

  69. Khalil OS. Spectroscopic and clinical aspects of noninvasive glucose measurements. Clin Chem 1999;45:165–177

    PubMed  CAS  Google Scholar 

  70. Saptari V, Toumi KY. Design of a mechanical-tunable filter spectrometer for noninvasive glucose measurement. Appl Opt 2004;43:2680–2688

    Article  PubMed  CAS  Google Scholar 

  71. Olesberg JT, Arnold MA, Mermelstein C, Schmitz J, Wagner J. Tunable laser diode system for noninvasive blood glucose measurements. Appl Spectrosc 2005;59:1480–1484

    Article  PubMed  CAS  Google Scholar 

  72. Blank TB, Ruchti TL, Lorenz SL, Monfre FL, Makarewicz MR, Mattu M, Hazen KH. Clinical results from a non-invasive blood glucose monitor. Proc SPIE 2002;4624:1–10

    Article  CAS  Google Scholar 

  73. Brown CD, Davis HT, Ediger MN, Fleming CM, Hull EL, Rohrscheib M. Clinical assessment of near-infrared spectroscopy for noninvasive diabetes screening. Diabetes Technol Ther 2005;7:456–466

    Article  PubMed  CAS  Google Scholar 

  74. Maruo K, Oota T, Tsurugi M, Nakagawa T, Arimoto H, Hayakawa M, Tamura M, Ozaki Y, Yamada Y. Noninvasive near-infrared blood glucose monitoring using a calibration model built by a numerical simulation method: trial application to patients in an intensive care unit. Appl Spectrosc 2006;60:1423–1431

    Article  PubMed  CAS  Google Scholar 

  75. Weinzimer SA. The “hop, skip, and jump“: on exercise with a continuous glucose sensor device. Diabetes Technol Ther 2004;6:463–465

    Article  PubMed  Google Scholar 

  76. Nunnold T, Colberg SR, Herriott MT, Somma CT. Use of the noninvasive Glucowatch® Biographer® during exercise of varying intensity. Diabetes Technol Ther 2004;6:454–462

    Article  PubMed  Google Scholar 

  77. Gandrud LM, Paguntalan HU, Van Wyhe MM, Kunselman BL, Leptien AD, Wilson DM, Eastman RC, Buckingham BA. Use of the Cygnus GlucoWatch Biographer at a diabetes camp. Pediatrics 2004;113:108–111

    Article  PubMed  Google Scholar 

  78. Cameron FJ, Ambler GR. Does continuous glucose monitoring have clinical utility in contemporary management of diabetes? J Paediatr Child Health 2004;40:79–84

    Article  PubMed  CAS  Google Scholar 

  79. Kovatchev BP, Cox DJ, Frederick LAG, Clarke WL. Evaluating the accuracy of continuous glucose-monitoring sensors. Continuous glucose-error grid analysis illustrated by Therasense Freestyle Navigator data. Diabetes Care 2004;27:1922–1928

    Article  PubMed  CAS  Google Scholar 

  80. Weinzimer SA, Tamborlane WV. Sensor-augmented pump therapy in type 1 diabetes. Curr Opin Endocrinol Diabetes Obesity 2008;15:118–122

    CAS  Google Scholar 

  81. Fayolle C, Brun JF, Bringer J, Mercier J, Renard E. Accuracy of continuous subcutaneous glucose monitoring with the Gluco-Day® in type 1 diabetic patients treated by subcutaneous insulin infusion during exercise of low versus high intensity. Diabetes Metab 2006;32:313–320

    Article  PubMed  CAS  Google Scholar 

  82. Knobbe EJ, Buckingham B. The extended Kalman filter for continuous glucose monitoring. Diabetes Technol Ther 2005;7:15–27

    Article  PubMed  CAS  Google Scholar 

  83. Feldman B, Brazg R, Schwartz S, Weinstein R. A continuous glucose sensor based on Wired Enzyme™ technology — results from a 3-day trial in patients with type 1 diabetes. Diabetes Technol Ther 2003;5:769–779

    Article  PubMed  CAS  Google Scholar 

  84. Streja D. Can continuous glucose monitoring provide objective documentation of hypoglycemia unawareness? Endocr Pract 2005;11:83–90

    PubMed  Google Scholar 

  85. McDonnell CM, Donath SM, Vidmar SI, Werther GA, Cameron FJ. A novel approach to continuous glucose analysis utilizing glycemic variation. Diabetes Technol Ther 2005;7:253–263

    Article  PubMed  CAS  Google Scholar 

  86. Goldberg PA, Siegel MD, Russel RR, Sherwin RS, Halickman JI, Cooper DA, Dziura JD, Inzucchi SE. Experience with the continuous glucose monitoring system in a medical intensive care unit. Diabetes Technol Ther 2004;6:339–347

    Article  PubMed  Google Scholar 

  87. Garg SK, Schwartz S, Edelman S. Improved glucose excursions using an implantable real-time continuous glucose sensor in adults with type 1 diabetes. Diabetes Care 2004;27:734–738

    Article  PubMed  Google Scholar 

  88. Vriesendorp TM, Devries JH, Holleman F, Dizoljic M, Hoekstra JBL. The use of two continuous glucose sensors during and after surgery. Diabetes Technol Ther 2005;7:315–322

    Article  PubMed  CAS  Google Scholar 

  89. Maia FFR, Araujo LR. Efficacy of continuous glucose monitoring system to detect unrecognized hypoglycemia in children and adolescents with type 1 diabetes. Arq Bras Endocrinol Metab 2005;49:569–574

    Google Scholar 

  90. Javid PJ, Halwick DR, Betit P, Thompson JE, Long K, Zhang Y, Jaksic T, Agus MSD. The first use of live continuous glucose monitoring in patients on extracorporeal life support. Diabetes Technol Ther 2005;7:431–439

    Article  PubMed  CAS  Google Scholar 

  91. Vojinovic VV, Calado CR, Silva AI, Mateus M, Cabral JMS, Fonseca LP. Micro-analytical GO/HRP bioreactor for glucose determination and bioprocess monitoring. Biosens Bioelectron 2005;20:1955–1961

    Article  PubMed  CAS  Google Scholar 

  92. Ichimori S, Nishida N, Shimoda S, Sekigami T, Matsuo Y, Ichinose K, Shichiri M, Sakakida M, Araki E. Development of a highly responsive needle-type glucose sensor using polyimide for a wearable artificial endocrine pancreas. J Artif Organs 2006;9:105–113

    Article  PubMed  CAS  Google Scholar 

  93. Shenkman L, Koukaki M, Karamanou S, Economou A. The P. CEZANNE Project: innovative approaches to continuous glucose monitoring. Conf Proc IEEE Eng Med Biol Soc 2007;6061–6064

  94. Clemens AH, Chang PH, Myers RW. The development of Biostator, a glucose controlled insulin infusion system (GCIIS). Horm Metab Res 1977;7:23–33

    PubMed  CAS  Google Scholar 

  95. Klonoff DC. The artificial pancreas: how sweet engineering will solve bitter problems. J Diabetes Sci Technol 2007;1:72–81

    PubMed  Google Scholar 

  96. Hovorka R, Chassin LJ, Wilinska ME, Canonico V, Akwi JA, Federici MO, Benedetti MM, Hutzli I, Zaugg C, Kaufmann H, Both M, Vering T, Schaller HC, Schaupp L, Bodenlenz M, Pieber TR. Closing the loop: the adicol experience. Diabetes Technol Ther 2004;6:307–318

    Article  PubMed  CAS  Google Scholar 

  97. Hovorka R. Continuous glucose monitoring and closed-loop systems. Diabetes Med 2005;23:1–12

    Article  Google Scholar 

  98. Wojcicki JM, Ladyzynski P. Toward the improvement of diabetes treatment: recent developments in technical support. J Artif Organs 2003;6:73–87

    PubMed  Google Scholar 

  99. Goriya Y, Kawamori R, Shichiri M, Abe H. The development of an artificial beta cell system and its validation in depancreatized dogs: the physiological restoration of blood glucose homeostasis. Med Progr Technol 1979;6:99–108

    CAS  Google Scholar 

  100. Dudde R, Vering T, Piechotta G, Hintsche R. Computer-aided continuous drug infusion: setup and test of a mobile closed-loop system for the continuous automated infusion of insulin. IEEE Trans Inf Technol Biomed 2006;10:395–402

    Article  PubMed  Google Scholar 

  101. Steil GM, Rebrin K, Darwin C, Hariri F, Saad MF. Feasibility of automating insulin delivery for the treatment of type 1 diabetes. Diabetes 2006;55:3344–3350

    Article  PubMed  CAS  Google Scholar 

  102. Renard E, Shah R, Miller M, Kolopp M, Costalat G, Bringer J. Sustained safety and accuracy of central IV glucose sensors connected to implanted insulin pumps and short-term closed-loop trials in diabetic patients. Diabetes 2003;52:A36

    Google Scholar 

  103. Renard E, Panteleon AE, Leong P, Han J, Kolopp M, Miller M, Shahmirian V, Rebrin K, Steil GM. Efficacy of closed loop control of blood glucose based on an implantable i. v. sensor and intraperitoneal pump. Diabetes 2004;53:A114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masami Hoshino.

Additional information

This review is revised from the article written by the author in the Japanese Journal of Artificial Organs 2006;35:341–345

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoshino, M., Haraguchi, Y., Mizushima, I. et al. Recent progress in mechanical artificial pancreas. J Artif Organs 12, 141–149 (2009). https://doi.org/10.1007/s10047-009-0463-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-009-0463-6

Key words

Navigation