Skip to main content
Log in

Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis

  • Original Article
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model’s suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1° using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane’s position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bludszuweit C. Model for a general mechanical blood damage prediction. Artif Organs 1995;19:583–589

    Article  PubMed  CAS  Google Scholar 

  2. Pinotti M, Rosa ES. Computational prediction of hemolysis in a centrifugal ventricular assist device. Artif Organs 1995;19: 267–273

    Article  PubMed  CAS  Google Scholar 

  3. Antaki JF, Ghattas O, Burgeen GW, He B. Computational flow optimization of rotary blood pump components. Artif Organs 1995;19:608–615

    Article  PubMed  CAS  Google Scholar 

  4. Allaire PE, Wood HG, Awad RS, Olsen DB. Blood flow in a continuous flow ventricular assist device. Artif Organs 1999;23: 769–773

    Article  PubMed  CAS  Google Scholar 

  5. Anderson JB, Wood HG, Allaire PE, McDaniel JC, Olsen DB, Bearnson G. Numerical studies of blood shear and washing in a continuous flow ventricular assist device. ASAIO J 2000;46: 486–494

    Article  PubMed  CAS  Google Scholar 

  6. Song X, Throckmorton AL, Wood HG, Antaki JF, Olsen DB. Quantitative evaluation of blood damage in a centrifugal VAD by computational fluid dynamics. Trans ASME 2004;126:410–418

    Article  Google Scholar 

  7. Untaroiu A, Throckmorton AL, Patel SM, Wood HG, Allaire PE, Olsen DB. Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance. Artif Organs 2005;29:581–591

    Article  PubMed  Google Scholar 

  8. Throckmorton AL, Untaroiu A, Allaire PE, Wood HG, Lim DS, McCulloch MA, Olsen DB. Numerical design and experimental hydraulic testing of an axial flow ventricular assist device for infants and children. ASAIO J 2007;53:754–761

    Article  PubMed  Google Scholar 

  9. Zhang J, Gellman B, Koert A, Dasse KA, Gilbert RJ, Griffith BP, Wu ZJ. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump. Artif Organs 2006;30:168–177

    Article  PubMed  Google Scholar 

  10. Zhang J, Koert A, Gellman B, Gempp TM, Dasse KA, Gilbert RJ, Griffith BP, Wu ZJ. Optimization of a miniature maglev ventricular assist device for pediatric circulatory support. ASAIO J 2007;53:23–31

    Article  PubMed  Google Scholar 

  11. Chang WK, Wong YW, Ong W, Koh SY, Chong V. Numerical investigation of the effects of the clearance gap between the inducer and impeller of an axial blood pump. Artif Organs 2005; 29:250–258

    Article  Google Scholar 

  12. Chan WK, Wong YW, Hu W. Design consideration of volute geometry of a centrifugal blood pump. Artif Organs 2005;29: 937–948

    Article  PubMed  Google Scholar 

  13. Wong YW, Chan WK, Hu W. Effect of tongue position and base circle diameter on the performance of a centrifugal blood pump. Artif Organs 2007;31:639–645

    Article  PubMed  Google Scholar 

  14. Chua LP, Song G, Lim TM, Zhou T. Numerical analysis of the inner flow field of a biocentrifugal blood pump. Artif Organs 2006;30:467–477

    Article  PubMed  Google Scholar 

  15. Zhu X, Zhang M, Zhang G, Liu H. Numerical investigation on hydrodynamics and biocompatibility of a magnetically suspended axial blood pump. ASAIO J 2006;52:624–629

    Article  PubMed  Google Scholar 

  16. Triep M, Brucker C, Schroder W, Siess T. Computational fluid dynamics and digital particle image velocimetry study of the flow through an optimized micro-axial blood pump. Artif Organs 2006;30:384–391

    Article  PubMed  Google Scholar 

  17. Masuzawa T. Computational fluid dynamics as a tool to develop the artificial heart. In: Yamaguchi T (ed) Clinical application of computational mechanics to the cardiovascular system. Tokyo: Springer-Verlag, 2000;246–257

    Google Scholar 

  18. Miyazoe Y, Sawairi T, Ito K, Konishi Y, Yamane T, Nishida M, Masuzawa T, Takiura K, Taenaka Y. Computational fluid dynamics analysis to establish the design process of a centrifugal blood pump. Artif Organs 1998;22:381–385

    Article  PubMed  CAS  Google Scholar 

  19. Miyazoe Y, Sawairi T, Ito K, Konishi Y, Yamane T, Nishida M, Asztalos B, Mauzawa T, Tsukiya T, Endo S, Taenaka Y. Computational fluid dynamics analysis to establish the design process of a centrifugal blood pump: second report. Artif Organs 1999;23:762–768

    Article  PubMed  CAS  Google Scholar 

  20. Yamane T, Asztalos B, Nishida M, Masuzawa T, Takiura K, Taenaka Y, Konishi Y, Miyazoe Y, Ito K. Flow visualization as a complementary tool to hemolysis testing in the development of centrifugal blood pump. Artif Organs 1998;22:375–380

    Article  PubMed  CAS  Google Scholar 

  21. Nishida M, Asztalos B, Yamane T, Masuzawa T, Tsukiya T, Endo S, Teanaka Y, Miyazoe Y, Ito K, Konishi Y. Flow visualization study to improve hemocompatibility of a centrifugal blood pump. Artif Organs 1999;23:697–703

    Article  PubMed  CAS  Google Scholar 

  22. Takiura K, Masuzawa T, Endo S, Wakisaka Y, Tatsumi E, Taenaka Y, Takano H, Yamane T, Nishida M, Asztalos B, Konishi Y, Miyazoe Y, Ito K. Development of design methods of a centrifugal blood pump with in vitro tests, flow visualization and computational fluid dynamics: results in hemolysis tests. Artif Organs 1998;22:393–398

    Article  PubMed  CAS  Google Scholar 

  23. Masuzawa T, Tsukiya T, Endo S, Tatsumi E, Taenaka Y, Takano H, Yamane T, Nishida M, Asztalos B, Miyazoe Y, Ito K, Sawairi T, Konishi Y. Development of design methods for a centrifugal blood pump with a fluid dynamic approach: results in hemolysis tests. Artif Organs 1999;23:757–761

    Article  PubMed  CAS  Google Scholar 

  24. Hoshi H, Shinshi T, Takantani S. Third-generation blood pumps with mechanical noncontact magnetic bearings. Artif Organs 2006;30:324–338

    Article  PubMed  Google Scholar 

  25. Masuzawa T, Kita Y, Matsuda K, Okada Y. Magnetically suspended rotary blood pump with radial type combined motor bearing. Artif Organs 2000;24:468–474

    Article  PubMed  CAS  Google Scholar 

  26. Masuzawa T, Kita Y, Okada Y. An ultradurable and compact rotary blood pump with a magnetically suspended impeller in the radial direction. Artif Organs 2001;25:395–399

    Article  PubMed  CAS  Google Scholar 

  27. Masuzawa T, Onuma H, Kim SJ, Okada Y. Magnetically suspended centrifugal blood pump with a self-bearing motor. ASAIO J 2002;48:437–442

    Article  PubMed  Google Scholar 

  28. Onuma H, Murakami M, Masuzawa T. Novel maglev pump with a combined magnetic bearing. ASAIO J 2005;51:50–55

    Article  PubMed  Google Scholar 

  29. Masuzawa T, Onuma H, Okada Y, Tsukiya T, Tatsumi E, Taenaka Y. Fluid force estimation and zero power control of the magnetically suspended centrifugal blood pump. JSME Fluid Engineering Conference 2004; No. 04-25, CDROM#718 (in Japanese)

  30. Yokoyama J. Pump design (in Japanese). Tokyo: Powersha, 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Masuzawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masuzawa, T., Ohta, A., Tanaka, N. et al. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis. J Artif Organs 12, 150–159 (2009). https://doi.org/10.1007/s10047-009-0459-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-009-0459-2

Key words

Navigation