Skip to main content
Log in

Effects of leaflet geometry on the flow field in three bileaflet valves when installed in a pneumatic ventricular assist device

  • Original Article
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Our group is currently developing a pneumatic ventricular assist device (PVAD). In this study, in order to select the optimal bileaflet valve for our PVAD, three kinds of bileaflet valve were installed and the flow was visualized downstream of the outlet valve using the particle image velocimetry (PIV) method. To carry out flow visualization inside the blood pump and near the valve, we designed a model pump that had the same configuration as our PVAD. The three bileaflet valves tested were a 21-mm ATS valve, a 21-mm St. Jude valve, and a 21-mm Sorin Bicarbon valve. The mechanical heart valves were mounted at the aortic position of the model pump and the flow was visualized by using the PIV method. The maximum flow velocity was measured at three distances (0, 10, and 30 mm) from the valve plane. The maximum flow velocity of the Sorin Bicarbon valve was less than that of the other two valves; however, it decreased slightly with increasing distance it the X-Y plane in all three valves. Although different bileaflet valves are very similar in design, the geometry of the leaflet is an important factor when selecting a mechanical heart valve for use in an artificial heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stevenson LW, Kormos RL. Mechanical cardiac support 2000: current applications and future trial design. J Heart Lung Transplant 2001;20:1–38

    Article  PubMed  CAS  Google Scholar 

  2. Nakata M, Masuzawa T, Tatsumi E, Taenaka Y, Nishimura T, Tsukiya T, Takano H, Tsuchimoto K, Ohba K. Characterization and optimization of the flow pattern inside a diaphragm blood pump based on flow visualization techniques. ASAIO J 1998;44:M714–M718

    Article  PubMed  CAS  Google Scholar 

  3. Kafesjian R, Howanec M, Ward GD, Diep L, Wagstaff LS, Rhee R. Cavitation damage of pyrolytic carbon in mechanical heart valves. J Heart Valve Dis 1994;3(Suppl I):S2–S7

    PubMed  Google Scholar 

  4. Wu C, Liu JS, Hwang NHC, Lin YKM. Statistical correlation between transient pressure drop and cavitation at closure of a mechanical heart valve. ASAIO J 2005;51:11–16

    Article  PubMed  Google Scholar 

  5. Lukic B, Zapanta CM, Griffith KA, Weiss WJ. Effect of the diastolic and systolic duration on valve cavitation in a pediatric pulsatile ventricular assist device. ASAIO J 2005;51:546–550

    Article  PubMed  Google Scholar 

  6. Sohn K, Manning KB, Fontaine AA, Tarbell JM, Deutsch S. Acoustic and visual characteristics of cavitation induced by mechanical heart valves. J Heart Valve Dis 2005;14:551–558

    PubMed  Google Scholar 

  7. Leverett LB, Hellums JD, Alfrey CP, Lynch EC. Red blood cell damage by shear stress. Biophys J 1972;12:257–273

    Article  PubMed  CAS  Google Scholar 

  8. Liu JS, Lu PC, Lo CW, Lai HC, Hwang NHC. An experimental study of steady flow patterns of a new trileaflet mechanical aortic valve. ASAIO J 2005;51:336–341

    Article  PubMed  Google Scholar 

  9. Lim WL, Chew YT, Chew TC, Low HT. Pulsatile flow studies of a porcine bioprosthetic aortic valve in vitro: PIV measurements and shear-induced blood damage. J Biomech 2001;34:1417–1427

    Article  PubMed  CAS  Google Scholar 

  10. Grigioni M, Daniele C, D’Avenio G, Barbaro V. The influence of the leaflets’ curvature on the flow field in two bileaflet prosthetic heart valves. J Biomech 2001;34:613–621

    Article  PubMed  CAS  Google Scholar 

  11. Goubergrits L, Affeld K. Numerical estimation of blood damage in artificial organs. Artif Organs 2004;28:499–507

    Article  PubMed  Google Scholar 

  12. Akutsu T, Saito J. Dynamic particle image velocimetry flow analysis of the flow field immediately downstream of bileaflet mechanical mitral prostheses. J Artif Organs 2006;9:165–178

    Article  PubMed  Google Scholar 

  13. Castellini P, Pinotti M, Scalise L. Particle image velocimetry for flow analysis in longitudinal planes across a mechanical artificial heart valve. Artif Organs 2004;28:507–513

    Article  PubMed  Google Scholar 

  14. Subramanian A, Mu H, Kadambi JR, Wernet MP, Brendzel AM, Harasaki H. Particle image velocimetry investigation of intravalvular flow fields of a bileaflet mechanical heart valve in a pulsatile flow. J Heart Valve Dis 2000;9(5):721–731

    PubMed  CAS  Google Scholar 

  15. Manning KB, Kini V, Fontaine AA, Deutsch S, Tarbell JM. Regurgitant flow field characteristics of the St. Jude bileaflet mechanical heart valve under physiologic pulsatile flow using particle image velocimetry. Artif Organs 2003;27(9):840–846

    Article  PubMed  Google Scholar 

  16. Kini V, Bachmann C, Fontaine A, Deutsch S, Tarbell JM. Integrating particle image velocimetry and laser Doppler velocimetry measurements of the regurgitant flow field past mechanical heart valves. Artif Organs 2001;25:136–145

    Article  PubMed  CAS  Google Scholar 

  17. Heise M, Schmidt S, Krüger U, Rückert R, Rösler S, Neuhaus P, Settmacher U. Flow pattern and shear stress distribution of distal end-to-side anastomoses. A comparison of the instantaneous velocity fields obtained by particle image velocimetry. J Biomech 2004;37:1043–1051

    Article  PubMed  Google Scholar 

  18. Lee HS, Tsukiya T, Homma A, Kamimura T, Takewa Y, Tatsumi E, Taenaka Y, Takano H, Kitamura S. Observation of cavitation bubbles in monoleaflet mechanical heart valves. J Artif Organs 2004;7:121–127

    Article  PubMed  Google Scholar 

  19. Lee HS, Taenaka Y, Kitamura S. Mechanisms of mechanical heart valve cavitation in an electrohydraulic total artificial heart. ASAIO J 2005;51:208–213

    Article  PubMed  Google Scholar 

  20. Akagawa E, Lee HS, Tatsumi E, Homma A, Tsukiya T, Katagiri N, Kakuta Y, Nishinaka T, Mizuno T, Ota K, Kansaku R, Taenaka Y. Effects of mechanical valve orifice direction on flow pattern in a ventricular assist device. J Artif Organs 2007;10:85–91

    Article  PubMed  Google Scholar 

  21. Medart D, Schmitz C, Rau G, Reul H. Design and in vitro performance of a novel bileaflet mechanical heart valve prosthesis. Int J Artif Organs 2005;28:256–263

    PubMed  CAS  Google Scholar 

  22. Lu PC, Liu JS, Huang RH, Lo CW, Lai HC, Hwang NHC. The closing behavior of mechanical heart valve prostheses. ASAIO J 2004;50:294–300

    Article  PubMed  Google Scholar 

  23. Akagawa E, Lee HS, Tatsumi E, Homma A, Tsukiya T, Taenaka Y. Effects of mechanism for mechanical heart valve on flow behavior inside the pulsatile blood pump. ASAIO J 2008;54(2):16A

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwansung Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H., Ikeuchi, Y., Akagawa, E. et al. Effects of leaflet geometry on the flow field in three bileaflet valves when installed in a pneumatic ventricular assist device. J Artif Organs 12, 98–104 (2009). https://doi.org/10.1007/s10047-009-0453-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-009-0453-8

Key words

Navigation