Skip to main content
Log in

Drug targeting with nano-sized carrier systems

  • REVIEW
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

This paper discusses the present status of, and future perspectives on, drug targeting through the bloodstream by describing the drug targeting concept, its methodologies, types of drug carriers, and recent clinical examples. This explanation and discussion is made from the viewpoint of possible correlations with studies on artificial organs, implants, and biomaterials. Two targeting methodologies (active and passive targeting), two targeting strategies (the magic bullet and the enhanced permeability and retention effect), and five types of drug carriers are explained. In addition, the clinical status of the five carrier systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M Yokoyama T Okano (1996) ArticleTitleTargetable drug carriers: present status and a future perspective Adv Drug Deliv Rev 21 77–80 Occurrence Handle10.1016/S0169-409X(96)00439-5

    Article  Google Scholar 

  2. Y Sugiyama (1996) ArticleTitleImportance of pharmacokinetic considerations in the development of drug delivery systems Adv Drug Deliv Rev 19 333–334 Occurrence Handle10.1016/0169-409X(96)00007-5

    Article  Google Scholar 

  3. Y Takakura K Maruyama M Yokoyama (1999) ArticleTitlePassive targeting of drugs (in Japanese) Drug Deliv Syst 14 425–426

    Google Scholar 

  4. Y Matsumura H Maeda (1986) ArticleTitleA new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs Cancer Res 46 6387–6392 Occurrence Handle2946403

    PubMed  Google Scholar 

  5. H Maeda (2001) ArticleTitleThe enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting Adv Enzyme Regul 41 189–207 Occurrence Handle10.1016/S0065-2571(00)00013-3 Occurrence Handle11384745

    Article  PubMed  Google Scholar 

  6. DC Litzinger AMJ Buiting N van Rooijen L Huang (1994) ArticleTitleEffect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes Biochim Biophys Acta 1190 99–107 Occurrence Handle8110825

    PubMed  Google Scholar 

  7. LW Seymour Y Miyamoto H Maeda M Brereton J Strohalm K Ulbrich R Duncan (1995) ArticleTitleInfluence of molecular weight on passive tumor accumulation of a soluble macromolecular drug Eur J Cancer 31A 766–770 Occurrence Handle10.1016/0959-8049(94)00514-6 Occurrence Handle7640051

    Article  PubMed  Google Scholar 

  8. PR Hamann MS Berger (2002) Mylotarg: the first antibody-targeted chemotherapy agent M Page (Eds) Tumor targeting in cancer therapy Humana Press Totowa 239–254

    Google Scholar 

  9. PA Trail D Willner SJ Lasch AJ Henderson S Hofstead AM Casazza RA Firestone KE Hellstrom (1993) ArticleTitleCure of xenografted human carcinomas by BR-96-doxorubicin immunoconjugates Science 261 212–215 Occurrence Handle8327892

    PubMed  Google Scholar 

  10. D Putnam J Kopecek (1995) ArticleTitlePolymer conjugates with anticancer activity Adv Polymer Sci 122 55–123

    Google Scholar 

  11. R Duncan S Dimitrijevic EG Evagorou (1996) ArticleTitleThe role of polymer conjugates in the diagnosis and treatment of cancer STP Pharma Sci 6 237–263

    Google Scholar 

  12. B Rihova M Biley V Vetvicka K Ulbrich J Strohalm J Kopecek R Duncan (1989) ArticleTitleBiocompatibility of N-(2-hydroxypropyl) methacrylamide copolymers containing adriamycin Biomaterials 10 335–342 Occurrence Handle10.1016/0142-9612(89)90075-6 Occurrence Handle2765631

    Article  PubMed  Google Scholar 

  13. SA Cartlidge R Duncan JB Lloyd PK Rejmanova J Kopecek (1987) ArticleTitleSoluble, crosslinked N-(2-hydroxypropyl) methacrylamide copolymers as potential drug carriers. 2: Effect of molecular weight on blood clearance and body distribution in the rat after intravenous administration. Distribution of unfractionated copolymer after intraperitoneal, subcutaneous or oral administration J Contr Rel 4 253–264 Occurrence Handle10.1016/0168-3659(87)90017-4

    Article  Google Scholar 

  14. LW Seymour R Duncan J Strohalm J Kopecek (1987) ArticleTitleEffect of molecular weight of N-(2-hydroxypropyl)methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats J Biomed Mater Res 21 1341–1358 Occurrence Handle10.1002/jbm.820211106 Occurrence Handle3680316

    Article  PubMed  Google Scholar 

  15. R Duncan LW Seymour KB O’Hare PA Flanagan S Wedge IC Hume K Ulbrich J Strohalm V Subr F Spreafico M Grandi M Ripamonti M Farao A Suarato (1992) ArticleTitlePreclinical evaluation of polymer-bound doxorubicin J Contr Rel 19 331–346 Occurrence Handle10.1016/0168-3659(92)90088-9

    Article  Google Scholar 

  16. PA Flanagan R Duncan V Subr K Ulbrich P Kopecekova J Kopecek (1992) ArticleTitleEvaluation of protein-N-(2-hydroxypropyl) methacrylamide copolymer conjugates as targetable drug carriers. 2. Body distribution of conjugates containing transferrin, anti-transferrin receptor antibody or anti-Thy 1.2 antibody and effectiveness of transferrin-containing daunomycin conjugates against mouse L 1210 leukaemia in vivo J Contr Rel 18 25–38 Occurrence Handle10.1016/0168-3659(92)90208-9

    Article  Google Scholar 

  17. SR Wedge R Duncan P Kopeckova (1991) ArticleTitleComparison of the liver subcelluar distribution of free daunomycin and that bound to galactosamine targeted N-(2-hydroxypropyl)methacrylamide copolymers, following intravenous administration in the rat Br J Cancer 63 546–549 Occurrence Handle1827030

    PubMed  Google Scholar 

  18. Y Mizushima Y Shiokawa S Kashiwazaki Y Ichikawa H Hashimoto A Sakuma (1987) ArticleTitleA multicenter double-blind controlled study of lipo-PGE1, PGE1 incorporated in lipid microspheres, in peripheral vascular disease secondary to connective tissue disorders J Rheumatol 14 97–101 Occurrence Handle3553591

    PubMed  Google Scholar 

  19. TM Allen A Chonn (1987) ArticleTitleLarge unilamellar liposomes with low uptake into the reticuloendothelial system FEBS Lett 223 42–46 Occurrence Handle10.1016/0014-5793(87)80506-9 Occurrence Handle3666140

    Article  PubMed  Google Scholar 

  20. MC Woodle DD Lasic (1992) ArticleTitleSterically stabilized liposomes Biochim Biophys Acta 1113 171–199 Occurrence Handle1510996

    PubMed  Google Scholar 

  21. B Uriely S Jeffers R Isacson K Kutsch D Wei-Tsao Z Yehoshua E Libson FM Muggia S Gabizon (1995) ArticleTitleLiposomal doxorubicin: antitumor activity and unique toxicities during two complementary phase I studies J Clin Oncol 13 1777–1785 Occurrence Handle7602367

    PubMed  Google Scholar 

  22. H Bader H Ringsdorf (1984) ArticleTitleWatersoluble polymers in medicine Angew Makromol Chem 123/124 457–485

    Google Scholar 

  23. M Yokoyama (1992) ArticleTitleBlock copolymers as drug carriers Crit Rev Ther Drug Carrier Syst 9 213–248 Occurrence Handle1458544

    PubMed  Google Scholar 

  24. M Yokoyama (1994) Site-specific drug delivery using polymeric carriers Advances in polymeric systems for drug delivery Gordon and Breach Yverdon, Switzerland 24–66

    Google Scholar 

  25. M Yokoyama (1998) Novel passive targetable drug delivery with polymeric micelles T Okano (Eds) Biorelated polymers and gels: controlled release and applications in biomedical engineering Academic San Diego 193–230

    Google Scholar 

  26. A Lavasanifar J Samuel GS Kwon (2002) ArticleTitlePoly(ethylene oxide)-block-poly(l-amino acid) micelles for drug delivery Adv Drug Deliv Rev 54 169–190 Occurrence Handle10.1016/S0169-409X(02)00015-7 Occurrence Handle11897144

    Article  PubMed  Google Scholar 

  27. Z Tuzar P Kratochvil (1976) ArticleTitleBlock and graft copolymer micelles in solution Adv Colloid Interfac Sci 6 201–232 Occurrence Handle10.1016/0001-8686(76)80009-7

    Article  Google Scholar 

  28. AV Kabanov VP Chekhonin VY Alakhov EV Batrakova AS Lebedev NS Melik-Nubarov SA Arzhakov AV Levashov GV Morozov ES Severin VA Kabanov (1989) ArticleTitleThe neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles: micelles as microcontainers for drug targeting FEBS Lett 258 343–345 Occurrence Handle10.1016/0014-5793(89)81689-8 Occurrence Handle2599097

    Article  PubMed  Google Scholar 

  29. A Lavasanifar J Samuel GS Kwon (2002) ArticleTitleThe effect of fatty acid substitution on the in vitro release of amphotericin B from micelles composed of poly(ethylene oxide)-block-poly(N-hexyl stearate-l-aspartamide J Controlled Release 79 165–172 Occurrence Handle10.1016/S0168-3659(01)00537-5

    Article  Google Scholar 

  30. C Allen J Han Y Yu D Maysinger A Eisenberg (2000) ArticleTitlePolycaprolactone-b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone J Controlled Release 51 275–286 Occurrence Handle10.1016/S0168-3659(99)00200-X

    Article  Google Scholar 

  31. A Rolland J O’Mullane P Goddard L Brookman K Petrak (1992) ArticleTitleNew macromolecular carriers for drugs. I. Preparation and characterization of poly(oxyethylene-b-isoprene-b-oxyethylene) block copolymer aggregates J Appl Polym Sci 44 1195–1203 Occurrence Handle10.1002/app.1992.070440709

    Article  Google Scholar 

  32. NY Rapoport JN Herron WG Pitt L Pitina (1999) ArticleTitleMicellar delivery of doxorubicin and its paramagnetic analog, ruboxyl, to HL-60 cells: effect of micelle structure and ultrasound on the intracellular drug uptake J Controlled Release 58 153–162 Occurrence Handle10.1016/S0168-3659(98)00149-7

    Article  Google Scholar 

  33. K Kataoka H Togawa A Harada K Yasugi T Matsumoto S Katayose (1996) ArticleTitleSpontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline Macromolecules 29 8556–8557 Occurrence Handle10.1021/ma961217+

    Article  Google Scholar 

  34. M Yokoyama S Inoue K Kataoka N Yui Y Sakurai (1989) ArticleTitleMolecular design for missile drug: synthesis of adriamycin conjugated with IgG using poly(ethylene glycol)-poly(aspartic acid) block copolymer as intermediate carrier Makromol Chem 190 2041–2054 Occurrence Handle10.1002/macp.1989.021900904

    Article  Google Scholar 

  35. M Yokoyama M Miyauchi N Yamada T Okano Y Sakurai K Kataoka S Inoue (1990) ArticleTitleCharacterization and anti-cancer activity of micelle-forming polymeric anti-cancer drug, adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer Cancer Res 50 1693–1700 Occurrence Handle2306723

    PubMed  Google Scholar 

  36. M Yokoyama N Yamada T Okano Y Sakurai K Kataoka S Inoue (1991) ArticleTitleToxicity and antitumor activity against solid tumors of micelle-forming polymeric drug and its extremely long circulation in blood Cancer Res 51 3229–3236 Occurrence Handle2039998

    PubMed  Google Scholar 

  37. GS Kwon S Suwa M Yokoyama T Okano Y Sakurai K Kataoka (1994) ArticleTitleEnhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxide–aspartate) block copolymer–adriamycin conjugates J Controlled Release 29 17–23 Occurrence Handle10.1016/0168-3659(94)90118-X

    Article  Google Scholar 

  38. M Yokoyama T Okano Y Sakurai S Fukushima K Okamoto K Kataoka (1999) ArticleTitleSelective delivery of adriamycin to a solid tumor using a polymeric micelle carrier system J Drug Targeting 7 171–186

    Google Scholar 

  39. CJT Hoes W Potman WAR van Heeswijk J Mud BG de Grooth J Grave J Feijen (1985) ArticleTitleOptimization of macromolecular prodrugs of the antitumor antibiotic adriamycin J Controlled Release 2 205–213 Occurrence Handle10.1016/0168-3659(85)90046-X

    Article  Google Scholar 

  40. R Duncan P Kopeckova-Rejmanova J Strohalm I Hume HC Cable J Pohl JB Lloyd J Kopecek (1987) ArticleTitleAnticancer agents coupled to N-(2-hydroxypropyl)methacrylamide copolymers I. Evaluation of daunomycin and puromycin conjugates in vitro Br J Cancer 55 165–174 Occurrence Handle3468994

    PubMed  Google Scholar 

  41. N Endo N Umemoto Y Kato Y Takeda T Hara (1987) ArticleTitleA novel covalent modification of antibodies at their amino groups with retention of antigen-binding activity J Immunol Methods 104 253–258 Occurrence Handle10.1016/0022-1759(87)90512-6 Occurrence Handle3680957

    Article  PubMed  Google Scholar 

  42. F Zunino G Pratesi A Micheloni (1989) ArticleTitlePoly(carboxylic acid) polymers as carriers for anthracyclines J Controlled Release 10 65–73 Occurrence Handle10.1016/0168-3659(89)90018-7

    Article  Google Scholar 

  43. Y Mizumura Y Matsumura M Yokoyama T Okano T Kawaguchi F Moriyasu T Kakizoe (2002) ArticleTitleIncorporation of the anticancer agent KRN 5500 into polymeric micelles diminishes the pulmonary toxicity Jpn J Cancer Res 93 1237–1243 Occurrence Handle12460465

    PubMed  Google Scholar 

  44. M Yokoyama P Opanasopit Y Maitani K Kawano T Okano (2004) ArticleTitlePolymer design and incorporation method for polymeric micelle carrier system containing water-insoluble anti-cancer agent camptothecin J Drug Targeting 12 373–384 Occurrence Handle10.1080/10611860412331285251

    Article  Google Scholar 

  45. P Opanasopit M Yokoyama M Watanabe K Kawano Y Maitani T Okano (2004) ArticleTitleBlock copolymer design for camptothecin incorporation into polymeric micelles for passive tumor targeting Pharm Res 21 2003–2010 Occurrence Handle10.1023/B:PHAM.0000048190.53439.eb

    Article  Google Scholar 

  46. M Yokoyama A Satoh Y Sakurai T Okano Y Matsumura T Kakizoe K Kataoka (1998) ArticleTitleIncorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size J Controlled Release 55 219–229 Occurrence Handle10.1016/S0168-3659(98)00054-6

    Article  Google Scholar 

  47. T Hamaguchi Y Matsumura M Suzuki K Shimizu R Goda I Nakamura I Nakatomi M Yokoyama K Kataoka J Kakizoe (2005) ArticleTitleNK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend the therapeutic window of the drug British J Cancer 92 1240–1246 Occurrence Handle10.1038/sj.bjc.6602479

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Yokoyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokoyama, M. Drug targeting with nano-sized carrier systems. J Artif Organs 8, 77–84 (2005). https://doi.org/10.1007/s10047-005-0285-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-005-0285-0

Key words

Navigation