Skip to main content
Log in

MFDiff: multiscale feature diffusion model for segmentation of 3D intracranial aneurysm from CT images

  • Original Article
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Intracranial aneurysm is a common life-threatening disease, and the rupture of an intracranial aneurysm carries a high risk of morbidity and mortality. Due to their small size in images, it remains a challenging task to accurately extract the intracranial aneurysms in CT images. In this paper, we propose a multi-scale feature diffusion model, named as MFDiff in short, for segmentation of 3D intracranial aneurysm. The proposed MFDiff includes a feature extraction module and a diffusion model. The feature extraction module is designed to extract features of the original image, and the features act as conditional priors to guide the diffusion model to gradually generate segmentation maps. The diffusion model takes a structure similar to U-Net as backbone, and there is a residual multi-scale feature fusion attention module (RMFA) in the diffusion model, which can adapt to intracranial aneurysms of different size due to multi-scale features. A local CT image dataset is employed for experiment, there are both ruptured and unruptured intracranial aneurysms in the images, and the size of intracranial aneurysms is various, even less than 3 mm. Compared with other popular methods, such as U-Net, GLIA-Net, UNETR++ , LinTransUNet, Swin UNETR, the proposed MFDiff shows better performance in intracranial aneurysm segmentation, the segmentation precision is 82.91% when the aneurysms of just size larger than 3 mm are taken into account, and the precision is 75.53% when considering aneurysms of all size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data and code availability

The code is available at https://github.com/Phmyml/MFDiff-master. And our dataset is being organized and will be uploaded soon.

References

  1. Jayaraman MV, Mayo-Smith WW, Tung GA, Haas RA, Rogg JM, Mehta NR, Doberstein CE (2004) Detection of intracranial aneurysms: multi–detector row CT angiography compared with DSA. Radiology 230(2):510–518

    Article  Google Scholar 

  2. Van Gijn J, Kerr RS, Rinkel GJ (2007) Subarachnoid haemorrhage. The Lancet 369(9558):306–318

    Article  Google Scholar 

  3. Westerlaan HE, van Dijk JMC, Jansen-van der Weide MC, de Groot JC, Groen RJM, Mooij JJA, Oudkerk M (2011) Intracranial aneurysms in patients with subarachnoid hemorrhage: CT angiography as a primary examination tool for diagnosis—systematic review and meta-analysis. Radiology 258(1):134–145. https://doi.org/10.1148/radiol.10092373

    Article  Google Scholar 

  4. UCAS Japan Investigators (2012) The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med 366(26):2474–2482

    Article  Google Scholar 

  5. Yoon NK, McNally S, Taussky P, Park MS (2016) Imaging of cerebral aneurysms: a clinical perspective. Neurovasc Imaging. https://doi.org/10.1186/s40809-016-0016-3

    Article  Google Scholar 

  6. Park A, Chute C, Rajpurkar P, Lou J, Ball RL, Shpanskaya K, Jabarkheel R, Kim LH, McKenna E, Tseng J, Ni J, Wishah F, Wittber F, Hong DS, Wilson TJ, Halabi S, Basu S, Patel BN, Lungren MP, Ng AY (2019) Deep learning–assisted diagnosis of cerebral aneurysms using the HeadXNet model. JAMA Netw Open [Online] 2(6):e195600. https://doi.org/10.1001/jamanetworkopen.2019.5600

    Article  Google Scholar 

  7. Sohl-Dickstein J, Weiss E, Maheswaranathan N, Ganguli S (2015) Deep unsupervised learning using nonequilibrium thermodynamics. In: International conference on machine learning. PMLR, pp 2256–2265

  8. Ho J, Jain A, Abbeel P (2020) Denoising diffusion probabilistic models. Adv Neural Inf Process Syst 33:6840–6851

    Google Scholar 

  9. Saharia C, Chan W, Saxena S, Li L, Whang J, Denton E, Ghasemi-pour SKS, Ayan BK, Mahdavi SS, Lopes RG (2022) Photorealistic text-to-image diffusion models with deep language understanding. Adv Neural Inf Process Syst 35:36479–36494

    Google Scholar 

  10. Ramesh A, Dhariwal P, Nichol A, Chu C, Chen M (2022) Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125

  11. Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B (2022) High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10684–10695

  12. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18 Springer, pp 234–241

  13. Li J, Chen J, Tang Y, Wang C, Landman BA, Zhou SK (2023) Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives. Med Image Anal, 85-102762

  14. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, et al (2021) Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 10012–10022

  15. Hentschke CM, Beuing O, Nickl R, Tönnies KD (2011) Automatic cerebral aneurysm detection in multimodal angiographic images. In: 2011 IEEE nuclear science symposium conference record, pp 3116–3120

  16. Cárdenes R, Pozo JM, Bogunovic H, Larrabide I, Frangi AF (2011) Automatic aneurysm neck detection using surface Voronoi diagrams. IEEE Trans Med Imaging 30(10):1863–1876

    Article  Google Scholar 

  17. Uchiyama Y, Yamauchi M, Ando H, Yokoyama R, Hara T, Fujita H, et al (2006) Automated classification of cerebral arteries in MRA images and its application to maximum intensity projection. In: 2006 international conference of the IEEE engineering in medicine and biology society. IEEE, pp 4865–4868

  18. Navaneethakrishnan M, Anand MV, Vasavi G, Rani VV (2023) Deep Fuzzy SegNet-based lung nodule segmentation and optimized deep learning for lung cancer detection. Pattern Anal Appl 26(3):1143–1159

    Article  Google Scholar 

  19. Ueda D, Yamamoto A, Nishimori M, Shimono T, Doishita S, Shimazaki A et al (2019) Deep learning for MR angiography: automated detection of cerebral aneurysms. Radiology 290(1):187–194

    Article  Google Scholar 

  20. Yang X, Xia D, Kin T et al (2023) A two-step surface-based 3D deep learning pipeline for segmentation of intracranial aneurysms. Comput Vis Media 9(1):57–69

    Article  Google Scholar 

  21. Mu N, Lyu Z, Rezaeitaleshmahalleh M, Tang J, Jiang J (2023) An attention residual u-net with differential preprocessing and geometric postprocessing: learning how to segment vasculature including intracranial aneurysms. Med Image Anal 84:102697

    Article  Google Scholar 

  22. Niemann A, Behme D, Larsen N, Preim B, Saalfeld S (2023) Deep learning-based semantic vessel graph extraction for intracranial aneurysm rupture risk management. Int J Comput Assist Radiol Surg 18(3):517–525

    Google Scholar 

  23. Park A, Chute C, Rajpurkar P, Lou J, Ball RL, Shpanskaya K et al (2019) Deep learning–assisted diagnosis of cerebral aneurysms using the HeadXNet model. JAMA Netw Open 2(6):e195600–e195600

    Article  Google Scholar 

  24. Xie S, Girshick R, Dollár P, et al (2017) Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1492–1500

  25. Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132–7141

  26. Yang J, Xie M, Hu C, Alwalid O, Xu Y, Liu J, Jin T, Li C, Tu D, Liu X, Zhang C, Li C, Long X (2021) Deep learning for detecting cerebral aneurysms with CT angiography. Radiology 298(1):155–163

    Article  Google Scholar 

  27. Gu Z, Cheng J, Fu H et al (2019) Ce-Net: context encoder network for 2d medical image segmentation. IEEE Trans Med Imaging 38(10):2281–2292

    Article  Google Scholar 

  28. Liu X, Mao J, Sun N, Yu X, Chai L, Tian Y et al (2023) Deep learning for detection of intracranial aneurysms from computed tomography angiography images. J Digit Imaging 36(1):114–123

    Article  Google Scholar 

  29. Dai X, Huang L, Qian Y, Xia S, Chong W et al (2020) Deep learning for automated cerebral aneurysm detection on computed tomography images. Int J Comput Assist Radiol Surg 15:715–723

    Article  Google Scholar 

  30. Bo ZH, Qiao H, Tian C, Guo Y, Li W, Liang T et al (2021) Toward human intervention-free clinical diagnosis of intracranial aneurysm via deep neural network. Patterns 2(2):100197

    Article  Google Scholar 

  31. Shi Z, Miao C, Schoepf UJ, Savage RH, Dargis DM, Pan C et al (2020) A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images. Nat Commun 11(1):6090

    Article  Google Scholar 

  32. Shahzad R, Pennig L, Goertz L, Thiele F, Kabbasch C, Schlamann M et al (2020) Fully automated detection and segmentation of intracranial aneurysms in subarachnoid hemorrhage on CTA using deep learning. Sci Rep 10(1):21799

    Article  Google Scholar 

  33. Amit T, Shaharbany T, Nachmani E, Wolf L (2021) Segdiff: image segmentation with diffusion probabilistic models. arXiv preprint arXiv:2112.00390

  34. Wu J, Fu R, Fang H, Zhang Y, Yang Y, et al (2022) MedSegDiff: medical image segmentation with diffusion probabilistic model. arXiv preprint arXiv:2211.00611

  35. Wolleb J, Sandkühler R, Bieder F, Valmaggia P, Cattin PC (2022) Diffusion models for implicit image segmentation ensembles. In: International conference on medical imaging with deep learning. PMLR, pp 1336–1348

  36. Chen T, Li L, Saxena S, Hinton G, Fleet DJ (2023) A generalist framework for panoptic segmentation of images and videos. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 909–919

  37. Baranchuk D, Rubachev I, Voynov A, Khrulkov V, Babenko A (2021) Label-efficient semantic segmentation with diffusion models. arXiv preprint arXiv:2112.03126

  38. Zimmermann RS, Schott L, Song Y, Dunn BA, Klindt DA (2021) Score-based generative classifiers. arXiv preprint arXiv:2110.00473

  39. Wolleb, J., Bieder, F., Sandkühler, R., Cattin, P. C. (2022) Diffusion models for medical anomaly detection. In: International conference on medical image computing and computer-assisted intervention. Springer Nature, Cham, pp 35–45

  40. Wyatt J, Leach A, Schmon SM, Willcocks CG (2022) Anoddpm: anomaly detection with denoising diffusion probabilistic models using simplex noise. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 650–656

  41. Chen S, Sun P, Song Y, Luo P (2023) Diffusiondet: diffusion model for object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 19830–19843

  42. Guo MH, Lu CZ, Hou Q, Liu Z, Cheng MM, Hu SM (2022) SegNeXt: rethinking convolutional attention design for semantic segmentation. Adv Neural Inf Process Syst 35:1140–1156

    Google Scholar 

  43. Yu F, Koltun V (2015) Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122

  44. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980

  45. Shaker A, Maaz M, Rasheed H, Khan S, Yang MH, Khan FS (2022) UNETR++: delving into efficient and accurate 3D medical image segmentation. arXiv preprint arXiv:2212.04497

  46. Zhang Z, Bagci U (2022) Dynamic linear transformer for 3d biomedical image segmentation. In: International workshop on machine learning in medical imaging. Springer Nature, Cham, pp 171–180

  47. Hatamizadeh A, Nath V, Tang Y, Yang D, Roth HR, Xu D (2021) Swin UNTER: swin transformers for semantic segmentation of brain tumors in mri images. International MICCAI brainlesion workshop. Springer, Cham, pp 272–284

    Google Scholar 

  48. Shen W, Xu W, Zhang H, Sun Z, Ma J, Ma X et al (2020) Automatic segmentation of the femur and tibia bones from X-ray images based on pure dilated residual U-net. Inverse Probl Imaging 15(6):1333–1346

    Article  MathSciNet  Google Scholar 

  49. Zhang H, Zhang W, Shen W, Li N, Chen Y, Li S et al (2021) Automatic segmentation of the cardiac MR images based on nested fully convolutional dense network with dilated convolution. Biomed Signal Process Control 68:102684

    Article  Google Scholar 

  50. Zhao C, Xiang S, Wang Y, Cai Z, Shen J et al (2023) Context-aware network fusing transformer and V-Net for semi-supervised segmentation of 3D left atrium. Expert Syst Appl 214:119105

    Article  Google Scholar 

  51. Kothari RU, Brott T, Broderick JP, Barsan WG, Sauerbeck LR, Zuccarello M, Khoury J (1996) The ABCs of measuring intracerebral hemorrhage volumes. Stroke 27(8):1304–1305

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (NSFC) under Grant 61976241.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Xinyu Pei, Yuanquan Wang; Methodology: Xinyu Pei; Formal analysis: Xinyu Pei; Writing—original draft: Xinyu Pei; Writing—review &editing: Xinyu Pei, Yuanquan Wang, Yueshan Tang, Yande Ren, Lei Zhang, Jin Wei, Di Zhao; Resources: Yuanquan Wang, Yande Ren; Supervision: Yuanquan Wang.

Corresponding authors

Correspondence to Yuanquan Wang or Lei Zhang.

Ethics declarations

Conflict of interest

The authors have no competing interests to declarations that are content of this article. The authors have no financial or proprietary interests in any material discussed in this article.

Research involving human participants and/or animals

The research in this paper does not involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, X., Ren, Y., Tang, Y. et al. MFDiff: multiscale feature diffusion model for segmentation of 3D intracranial aneurysm from CT images. Pattern Anal Applic 27, 66 (2024). https://doi.org/10.1007/s10044-024-01266-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10044-024-01266-z

Keywords

Navigation