Advertisement

The modified generic polar harmonic transforms for image representation

  • Xilin LiuEmail author
  • Yongfei Wu
  • Zhuhong Shao
  • Jiasong Wu
Theoretical advances
  • 36 Downloads

Abstract

This paper introduces four classes of orthogonal transforms by modifying the generic polar harmonic transforms. Then, the rotation invariant feature of the proposed transforms is investigated. Compared with the traditional generic polar harmonic transforms, the proposed transforms have the ability to describe the central region of the image with a parameter controlling the area of the region. Experimental results verified the image representation capability of the proposed transforms and showed better performance of the proposed transform in terms of rotation invariant pattern recognition.

Keywords

Modified polar harmonic transforms Polar harmonic transforms Rotation invariants Image representation 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61601311 and 61876037, Project of Beijing Excellent Talents (No. 2016000020124G088), Beijing Municipal Education Research Plan Project (SQKM201810028018), Project supported by the Natural Science Foundation of Shanxi Province, China (No. 201801D221186), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2017141), and School Foundation of Taiyuan University of Technology (Nos. 2017QN11 and 2017QN12).

References

  1. 1.
    Flusser J, Suk T (2006) Rotation moment invariants for recognition of symmetric objects. IEEE Trans Image Process 15(12):3784–3790MathSciNetCrossRefGoogle Scholar
  2. 2.
    J. Flusser, T. Suk, B. Zitova (2009) Moments and moments invariants in pattern recognition. Wiley, HobokenGoogle Scholar
  3. 3.
    Flusser J, Suk T (1993) Pattern recognition by affine moment invariants. Pattern Recogn 26(1):167–174MathSciNetCrossRefGoogle Scholar
  4. 4.
    Shu HZ, Luo LM, Coatrieux JL (2007) Moment-based approaches in imaging part 1, basic features. IEEE Eng Med Biol Mag 26(5):70–74CrossRefGoogle Scholar
  5. 5.
    Mukundan R, Ramakrishnan KR (1998) Moment functions in image analysis-theory and applications. World Scientific, SingaporeCrossRefzbMATHGoogle Scholar
  6. 6.
    Fu B, Zhou JZ, Li YH, Zhang GJ, Wang C (2007) Image analysis by modified Legendre moments 40(2):691–704Google Scholar
  7. 7.
    Mukundan R, Ong SH, Lee PA (2001) Image analysis by Tchebichef moments. IEEE Trans Image Process 10(9):1357–1364MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Teague MR (1980) Image analysis via the general theory of moments. J Opt Soc Am 70(8):920–930MathSciNetCrossRefGoogle Scholar
  9. 9.
    Khotanzad A, Hong YH (1990) Invariant image recognition by Zernike moments. IEEE Trans Pattern Anal Mach Intell 12(5):489–497CrossRefGoogle Scholar
  10. 10.
    Sheng YL, Shen LX (1994) Orthogonal Fourier–Mellin moments for invariant pattern recognition. JOSA A 11(6):1748–1757CrossRefGoogle Scholar
  11. 11.
    Bailey RR, Srinath M (1996) Orthogonal moment features for use with parametric and non-parametric classifiers. IEEE Trans Pattern Anal Mach Intell 18(4):389–399CrossRefGoogle Scholar
  12. 12.
    Ananthraj P, Venkataramana A (2007) Radial Krawtchouk moments for rotational invariant pattern recognition. In: 6th International conference on information, communications and signal processing, pp 1–5Google Scholar
  13. 13.
    Xiao B, Ma JF, Cui JT (2012) Radial Tchebichef moment invariants for image recognition. J Vis Commun Image Represent 23(2):381–386CrossRefGoogle Scholar
  14. 14.
    Xiao B, Wang GY, Li WS (2014) Radial shifted Legendre moments for image analysis and invariant image recognition. Image Vis Comput 32(12):994–1006CrossRefGoogle Scholar
  15. 15.
    Xiao B, Ma JF, Wang X (2010) Image analysis by Bessel–Fourier moments. Pattern Recogn 43(8):2620–2629CrossRefzbMATHGoogle Scholar
  16. 16.
    Ping ZL, Wu RG, Sheng YL (2002) Image description with Chebyshev–Fourier moments. J Opt Soc Am A Opt Image Sci Vis 19(9):1748–1754MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ping ZL, Ren HP, Zou J, Sheng YL, Bo W (2007) Generic orthogonal moments: Jacobi–Fourier moments for invariant image description. Pattern Recogn 40(4):1245–1254CrossRefzbMATHGoogle Scholar
  18. 18.
    Zhu HQ, Yang Y, Gui ZG, Zhu Y, Chen ZH (2016) Image analysis by generalized Chebyshev–Fourier and generalized pseudo-Jacobi–Fourier moments. Pattern Recogn 51:1–11CrossRefzbMATHGoogle Scholar
  19. 19.
    Xia T, Zhu HQ, Shu HS, Haigron P, Luo LM (2007) Image description with generalized pseudo-Zernike moments. J Opt Soc Am A Opt Image Sci Vis 24(1):50–59CrossRefGoogle Scholar
  20. 20.
    Zhu HQ, Yang Y, Zhu XL, Gui ZG, Shu HZ (2014) General form for obtaining unit disc-based generalized orthogonal moments. IEEE Trans Image Process 23(12):5455–5469MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Xiao B, Wang GY (2013) Generic radial orthogonal moment invariants for invariant image recognition. J Vis Commun Image Represent 24(7):1002–1008CrossRefGoogle Scholar
  22. 22.
    Dai XB, Liu TL, Shu HZ, Luo LM (2013) Pseudo-Zernike moments invariants to blur degradation and their use in image recognition. Lect Notes Comput Sci 7751:90–97CrossRefGoogle Scholar
  23. 23.
    Shao ZH, Shang YY, Zhang Y, Liu X, Guo G (2016) Robust watermarking using orthogonal Fourier–Mellin moments and chaotic map for double images. Sig Process 120:522–531CrossRefGoogle Scholar
  24. 24.
    Chen BJ, Shu HZ, Zhang H, Goatrieux G, Luo LM, Coatrieux JL (2011) Combined invariants to similarity transformation and to blur using orthogonal Zernike moments. IEEE Trans Image Process 20(2):345–360MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ren HP, Ping ZL, Bo W, Wu WK, Sheng YL (2003) Multidistortion-invariant image recognition with radial harmonic Fourier moments. J Opt Soc Am A Opt Image Sci Vis 20(4):631–637MathSciNetCrossRefGoogle Scholar
  26. 26.
    Yap PT, Jiang XD, Kot AC (2010) Two-dimensional polar harmonic transforms for invariant image representation. IEEE Trans Pattern Anal Mach Intell 32(7):1259–1270CrossRefGoogle Scholar
  27. 27.
    Hu HT, Zhang YD, Shao C, Ju Q (2014) Orthogonal moments based on exponent functions: exponent–Fourier moments. Pattern Recogn 47(8):2596–2606CrossRefzbMATHGoogle Scholar
  28. 28.
    Hoang TV, Tabbone S (2011) Generic polar harmonic transform for invariant image description. In: Proceedings of 18th IEEE international conference on image processing, pp 829–832Google Scholar
  29. 29.
    Wang CP, Wang XY, Xia ZQ (2016) Geometrically invariant image watermarking based on fast radial harmonic Fourier moments. Signal Process Image Commun 45:10–23CrossRefGoogle Scholar
  30. 30.
    Wang XY, Liu YN, Li S, Yang HY, Niu PP (2016) Robust image watermarking approach using polar harmonic transforms based geometric correction. Neurocomputing 174:627–642CrossRefGoogle Scholar
  31. 31.
    Li LD, Li SS, Abraham A, Pan JS (2012) Geometrically invariant image watermarking using polar harmonic transforms. Inf Sci 199:1–19MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Gan YF (2015) Research on copy-move image forgery detection using features of discrete polar complex exponent transform. Int J Bifurc Chaos 25(14):1540018-1–1540018-15CrossRefzbMATHGoogle Scholar
  33. 33.
    Li YN (2013) Image copy-move forgery detection based on polar cosine transform and approximate nearest neighbor searching. Forensic Sci Int 224:59–67CrossRefGoogle Scholar
  34. 34.
    Hoang TV, Tabbone S (2014) Generic polar harmonic transforms for invariant image representation. Image Vis Comput 32(8):497–509CrossRefzbMATHGoogle Scholar
  35. 35.
    Abu-Mostafa YS, Psaltis D (1984) Recognitive aspects of moment invariants. IEEE Trans Pattern Anal Mach Intell 6(6):698–706CrossRefGoogle Scholar
  36. 36.
    Hu HT, Ju Q, Shao C (2016) Errata and comments on “Errata and Comments on orthogonal moments based on exponent functions: exponent–Fourier moments”. Pattern Recogn 52:471–476CrossRefzbMATHGoogle Scholar
  37. 37.
    Xiao B, Li WS, Wang GY (2015) Errata and comments on “Orthogonal moments based on exponent functions: exponent–Fourier moments”. Pattern Recogn 48(4):1571–1573CrossRefzbMATHGoogle Scholar
  38. 38.
  39. 39.
  40. 40.
    Dai XB, Zhang H, Liu TL, Shu HZ, Luo LM (2014) Legendre moment invariants to blur and affine transformation and their use in image recognition. Pattern Anal Appl 17(2):311–326MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Vedaldi A, Lenc K (2015) MatConvNet—convolutional neural networks for MATLAB. In: Proceedings of the ACM international conference on multimediaGoogle Scholar
  42. 42.
    Teh CH, Chin RT (1988) On image analysis by the methods of moments. IEEE Trans Pattern Anal Mach Intell 20(4):496–513CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Data ScienceTaiyuan University of TechnologyShanxiChina
  2. 2.College of Information EngineeringCapital Normal UniversityBeijingChina
  3. 3.School of Computer Science and EngineeringSoutheast UniversityNanjingChina
  4. 4.Centre de Recherche en Information Biomédicale Sino-françaisNanjingChina

Personalised recommendations