Skip to main content
Log in

Parallel cycle-based branch-and-bound method for Bayesian network learning

  • Short paper
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Bayesian networks (BNs) are one of the most commonly used models for representing uncertainty in medical diagnosis. Learning the exact structure of a BN is a challenging problem. This paper proposes a multi-threaded branch-and-bound (B&B) method, called parallel cycle-based branch-and-bound (parallel CB-B&B). On the one hand, CB-B&B improves the standard B&B method by leveraging two heuristics, namely the branching strategy and the bounding operators; on the other hand, the learning procedure is alleviated by executing CB-B&B over a set of parallel processors. In comparison with conventional exact structure learning approaches for BN, the obtained results demonstrate that the proposed CB-B&B is efficient. On average, it produces the exact structure for BN three times faster than the standard B&B version. We also present simulations on parallel CB-B&B which show a significant gain in terms of execution time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Li J, Fu AWC, He H, Chen J, Jin H, McAullay D, Kelman C (2005) Mining risk patterns in medical data. In: Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining. ACM, pp. 770–775

  2. Lavrac̃ N, (1999) Selected techniques for data mining in medicine. Artif Intell Med 16(1):3–23

    Article  MathSciNet  Google Scholar 

  3. Pearl J (2014) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Francisco

    MATH  Google Scholar 

  4. Hurn MA, Mardia KV, Hainsworth TJ, Kirkbride J, Berry E (1996) Bayesian fused classification of medical images. IEEE Trans Med imaging 15(6):850–858

    Article  Google Scholar 

  5. Arias J, Martínez-Gómez J, Gámez JA, de Herrera AGS, Müller H (2016) Medical image modality classification using discrete Bayesian networks. Comput Vis Image Underst 151:61–71

    Article  Google Scholar 

  6. Al-Aidaroos KM, Bakar AA, Othman Z (2012) Medical data classification with Naive Bayes approach. Inf Technol J 11(9):1166

    Article  Google Scholar 

  7. Wolfson J, Bandyopadhyay S, Elidrisi M, Vazquez-Benitez G, Vock DM, Musgrove D, O’Connor PJ (2015) A Naive Bayes machine learning approach to risk prediction using censored, time-to-event data. Stat Med 34(21):2941–2957

    Article  MathSciNet  Google Scholar 

  8. Wang KJ, Makond B, Wang KM (2014) Modeling and predicting the occurrence of brain metastasis from lung cancer by Bayesian network: a case study of Taiwan. Comput Biol Med 47:147–160

    Article  Google Scholar 

  9. Klement W, Wilk S, Michalowski W, Farion KJ, Osmond MH, Verter V (2012) Predicting the need for CT imaging in children with minor head injury using an ensemble of Naive Bayes classifiers. Artif Intell Med 54(3):163–170

    Article  Google Scholar 

  10. Chickering DM, Heckerman D, Meek C (2004) Large-sample learning of Bayesian networks is NP-hard. J Mach Learn Res 5:1287–1330

    MathSciNet  MATH  Google Scholar 

  11. Silander T, Myllymaki P (2012) A simple approach for finding the globally optimal Bayesian network structure. arXiv preprint arXiv:1206.6875

  12. Singh AP, Moore AW (2005) Finding optimal Bayesian networks by dynamic programming

  13. Cussens J (2012) Bayesian network learning with cutting planes. arXiv preprint arXiv:1202.3713

  14. Cussens J (2014) Integer programming for Bayesian network structure learning. Qual Technol Quant Manag 11(1):99–110

    Article  Google Scholar 

  15. Yuan C, Malone B, Wu X (2011) Learning optimal Bayesian networks using A* search. In: IJCAI proceedings-international joint conference on artificial intelligence, vol 22, no. 3, p 2186

  16. Yuan C, Malone B (2012) An improved admissible heuristic for finding optimal Bayesian networks. In: Proceedings of the 28th conference on uncertainty in artificial intelligence

  17. Yuan C, Malone B (2013) Learning optimal Bayesian networks: a shortest path perspective. J Artif Intell Res (JAIR) 48:23–65

    Article  MathSciNet  MATH  Google Scholar 

  18. De Campos CP, Ji Q (2011) Efficient structure learning of Bayesian networks using constraints. J Mach Learn Res 12:663–689

    MathSciNet  MATH  Google Scholar 

  19. Chow CK, Liu CN (1968) Approximating discrete probability distributionswith dependence trees. Inf Theory 14:462–467

    Article  MATH  Google Scholar 

  20. Meila M, Jaakkola T (2000) Tractable Bayesian learning of tree belief networks. In: Proceedings of the sixteenth conference on uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., pp 380–388

  21. Spirtes P, Glymour C (1991) An algorithm for fast recovery of sparse causal graphs. Soc Sci Comput Rev 9(1):62–72

    Article  Google Scholar 

  22. Kalisch M, Buhlmann P (2007) Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J Mach Learn Res 8:613–636

    MATH  Google Scholar 

  23. Cooper GF, Herskovits E (1992) A Bayesian method for the induction of probabilistic networks from data. Mach Learn 9(4):309–347

    MATH  Google Scholar 

  24. Liu F, Zhu Q (2007) The max-relevance and min-redundancy greedy Bayesian network learning algorithm. In: International Work Conference on the Interplay Between Natural and Artificial Computation. Springer, Berlin, Heidelberg, pp 346–356

  25. Daly R, Shen Q (2009) Learning Bayesian network equivalence classes with ant colony optimization. J Artif Intell Res 35(1):391

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang Q, Li Z, Zhou CJ, Wei XP (2013) Bayesian network structure learning based on the chaotic particle swarm optimization algorithm. Genet Mol Res 12(4):4468–4479

    Article  Google Scholar 

  27. Dos Santos EB, Hruschka Jr ER, Hruschka ER, Ebecken NF (2010) A distance-based mutation operator for learning Bayesian network structures using evolutionary algorithms. In: 2010 IEEE congress on evolutionary computation (CEC). IEEE, pp 1–8

  28. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MathSciNet  MATH  Google Scholar 

  29. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  MathSciNet  MATH  Google Scholar 

  30. Teyssier M, Koller D (2005) Ordering-based search: a simple and effective algorithm for learning Bayesian networks. In: Proceedings of the 21st conference on uncertainty in artificial intelligence, UAÍ05, pp 584–590

  31. Melab N (2005) Contributions à la résolution de problèmes d’optimisation combinatoire sur grilles de calcul. LIFL, USTL, Novembre. Thèse HDR

  32. Cung VD et al (1994) Parallel and distributed branch-and-bound/A* algorithms. Laboratoire PRISM, Universite de Versailles, Techncial report, p 94

  33. Gendron B, Crainic TG (1994) Parallel branch-and-branch algorithms: survey and synthesis. Oper Res 42(6):1042–1066

    Article  MathSciNet  MATH  Google Scholar 

  34. Miller Donald L, Pekny Joseph F (1993) Commentary—the role of performance metrics for parallel mathematical programming algorithms. ORSA J Comput 5(1):26–28

    Article  Google Scholar 

  35. Janakiram Virendra K (1988) A randomized parallel branch-and-bound algorithm. Int J Parallel Program 17(3):277–301

    Article  MATH  Google Scholar 

  36. Krivelevich M et al (2007) Approximation algorithms and hardness results for cycle packing problems. ACM Trans Algorithms (TALG) 3(4):48

    Article  MathSciNet  MATH  Google Scholar 

  37. Cooper GF (1984) NESTOR: a computer-based medical diagnostic aid that integrates causal and probabilistic knowledge. No. STAN-CS-84-1031. STANFORD UNIV CA DEPT OF COMPUTER SCIENCE, 1984

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youcef Benmouna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benmouna, Y., Mezmaz, M.S., Mahmoudi, S. et al. Parallel cycle-based branch-and-bound method for Bayesian network learning. Pattern Anal Applic 23, 897–911 (2020). https://doi.org/10.1007/s10044-019-00815-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-019-00815-1

Keywords

Navigation